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Abstract

When voters’ preferences on candidates are mutually coherent in the sense that they are at all close to being perfectly single-peaked, perfectly single-troughed or perfectly polarized there is a large probability that a Pairwise Majority Rule Winner exists in elections with a small number of candidates.  Given this fact, the study develops representations for Condorcet Efficiency of plurality rule as a function of the proximity of voters’ preferences on candidates to being perfectly single-peaked, perfectly single-troughed or perfectly polarized.  We find that the widely used plurality rule has Condorcet Efficiency values that behave in very different ways under each of these three models of mutual coherence.  

The Unexpected Behavior of Plurality Rule

Many different criteria can be used to argue as to which candidate should be selected from a set of m possible candidates in an election.  One of the most common criteria that are discussed in the literature on this topic is the Condorcet Criterion.  To describe this concept, we start by developing the notion of a pairwise majority rule winner (PMRW). 

For the case of elections on three candidates {A,B,C}, there are six possible linear preference rankings that each voter might have on the candidates:
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Here, 
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 denotes the number of voters that have the corresponding preference ranking on the candidates, where the total number of voters is 
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.   These rankings assume that no voter is ever indifferent between candidates, and that voters never have intransitive preferences, or cyclic preferences, on the candidates.  Any given combination of 
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is referred to as a voting situation, denoted by n.  A PMRW exists for a given voting situation if some candidate can defeat each of the other candidates by pairwise majority rule (PMR) voting on the corresponding pairs of candidates.  For example, A beats B by PMR, denoted by AMB, if 
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, and AMC if 
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.  Then, A is the PMRW in a given three-candidate voting situation if both AMB and AMC.  
We assume that n is odd throughout this study to avoid the complication of dealing with the case of ties when using PMR.  We also assume that all voters will cast votes that are in agreement with their actual preferences on the candidates.  The Condorcet Criterion suggests that the PMRW should be selected as the ultimate winner in any election.   However, it is well known that some voting situations can result in the outcome that a PMRW does not exist [Condorcet (1785)].  The concept of the Condorcet Efficiency of a voting rule integrates these two notions by defining the conditional probability that the voting rule elects the PMRW, given that a PMRW exists.

Many studies have been conducted to consider the veracity of two intuitively appealing general hypotheses that are related to the probability that a PMRW exists and to the Condorcet Efficiency of voting rules:

H1 – The probability that a PMRW exists in voting situations tends to increase as the voters’ preferences show an increased degree of mutual coherence in the way in which the individual voters developed their preferences on the candidates.
H2 – The Condorcet efficiency of voting rules tends to increase as the voters’ preferences show an increased degree of mutual coherence in the way in which the individual voters developed their preferences on the candidates.

Hypothesis H1 has been studied extensively in the literature, and conclusive evidence has been found to support the ideas behind it.  Much less work has been conducted in attempts to verify H2.  The purpose of the current study is to provide conclusive evidence that the notions behind H2 are generally invalid when plurality rule is the voting rule under consideration.  Plurality rule is the focus of this study since it is by far the most commonly used election procedure.
Conclusive Support for H1


Gehrlein (2006a) provides an extensive analysis to support the ideas behind H1.  That study finds that the relationship between the probability that a PMRW exists and measures of the degree of homogeneity, or overall preference agreement, that is present in voters’ preferences is quite weak, unless these measures reflect the notion that voters’ preferences are obtained by some mutually coherent process.  For example, the well known results from Black (1958) can be used in our case to show that that a PMRW must exist for odd n when voters’ preferences on candidates are formed according to an underlying model that is consistent with single-peaked preferences.  Arrow (1963) provides an alternative definition for single-peaked preferences, such that for the case of three-candidate elections a PMRW must exist for odd n as long as at least one candidate is never ranked as least preferred by any voter.

Niemi (1969) introduced the notion of the proximity of voting situations to the condition of perfectly single-peaked preferences, suggesting that voting situations that are ‘close’ to meeting perfect single peakedness should have a high probability of having a PMRW.  In agreement with this concept, Gehrlein (2006a) measures the proximity of a voting situation to perfectly single-peaked preferences by a parameter b, where
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Parameter b measures the minimum number of times that some candidate is bottom ranked in a given voting situation.  If 
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 for a given voting situation, then the voters’ preferences reflect the condition of perfectly single-peaked preferences, and the value of b then reflects the relative proximity of a voting situation to the condition of perfect single-peakedness.
Gehrlein (2006a) uses a procedure called EUPIA2 that is developed in detail in Gehrlein (2005, 2006b) to obtain a closed form representation for the conditional probability 
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 that a PMRW exists in a randomly selected voting situation, given that only voting situations are being considered for which parameter b has some specified value k.  This representation is based on the assumption, 
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For odd 
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In the limit that 
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 does not rely on a specified value of k.  Instead, we use the proportion 
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 and then the algebraic result is obtained in the limit 
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Table 1 lists computed values of 
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.  For example, Table 1 tells us that when attention is restricted solely to voting situations with 
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, there is probability .9574 that a randomly selected voting situation will have a PMRW.  
Table 1. Computed values of 
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	0
	1.0000
	1.0000

	.01
	.9999
	.9963

	.03
	.9991
	.9888

	.05
	.9973
	.9814

	.07
	.9946
	.9740

	.09
	.9907
	.9665

	.11
	.9854
	.9589

	.13
	.9784
	.9511

	.15
	.9693
	.9431

	.17
	.9574
	.9348

	.19
	.9416
	.9263

	.21
	.9203
	.9174

	.23
	.8905
	.9083

	.25
	.8462
	.8990

	.27
	.8009
	.8903

	.29
	.7720
	.8828

	.31
	.7559
	.8775

	.33
	.7501
	.8751

	1/3
	.7500
	.8750


The results in Table 1 clearly show that 
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 increases, to reflect situations that are more removed from the condition of perfect single-peakedness.  Moreover, 
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Vickery (1960) considers the well known condition of single-troughed preferences, and the imposition of this assumption will lead to the necessary existence of a PMRW in the case that we are considering.  Vickery asserts that the condition of single-troughed preferences is equivalent to the condition of single-peaked preferences, since every single-peaked voting situation corresponds to a single troughed-voting situation in which all voters’ preference rankings are inverted.  For a three-candidate election, it follows from Arrow (1963) that a voting situation with perfectly single-troughed preferences is one in which at least one candidate is never ranked as most preferred by any voter.  Following previous development of the notion of proximity to perfectly single-peaked preferences, parameter t measures the proximity of a voting situation to the condition of perfectly single-troughed preferences, where
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Parameter t measures the minimum number of times that some candidate is top-ranked in the preference rankings of candidates, so that a voting situation is perfectly single-troughed if 
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, and the value of t then reflects the relative proximity of a voting situation to the condition of perfect single-troughedness.  Vickery’s assertion turns out to be true in this situation, since 
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Ward (1965) develops a result that leads to the conclusion that a PMRW must exist in a three-candidate election if some candidate is perfectly polarizing, in the sense that this candidate is never middle ranked, or ranked at the center, of any voter’s preference ranking.  That is, every voter will either consider this candidate to be either the most preferred or the least preferred.  Gehrlein (2006a) develops the parameter c to reflect the proximity of a voting situation to the condition of perfect polarization, with 
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It is somewhat surprising to find that 
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In general, we use the notation 
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Table 1 lists computed values of 
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  increases. 

There is a high probability that a PMRW will exist if voters have preferences that are at all close to being consistent with the underlying models of either single-peaked preferences, single-troughed preferences or polarized preferences.  Moreover, the conditions of H1 are observed consistently with each of these three models for describing the internal structural coherence of the way in which voters form preferences on the available candidates.  When models are used to describe voter preference formation that do not require the same degree of internal structural consistency as the three models that we have considered, the resulting evidence gives only very weak support for H1.  
Previous Conflicting Evidence Related to H2

Many studies have been conducted to estimate the Condorcet Efficiency of voting rules under various assumptions, typically using Monte-Carlo simulation analysis.   While these studies provide valuable insights, most of them have not focused on the ideas behind H2, and as a result they are not discussed in the current study.  Moreover, the vast majority of this work has focused H2 has been based on models for obtaining voters’ preferences in voting situations that lack the internal structural consistency of the three models that were considered in the preceding section.  The results typically are based on models that generate random voter preference profiles.  A voter preference profile lists each individual voter’s preference ranking on candidates.  A voting situation can then easily be obtained by accumulating the number of voters with each of the possible preference rankings on candidates to obtain the associated 
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.  These models can therefore easily be used to obtain randomly generated voting situations.
Berg (1985a) generalized several procedures for obtaining random voter preference profiles by using Pólya-Eggenberger (P-E) XE "Pólya-Eggenberger (P-E)"  models [Johnson XE "Johnson"  and Kotz (1977)]. P-E models are easily described in the context of constructing random voter preference profiles by drawing colored balls in a classic urn experiment.  The experiment starts with balls of six different colors being placed in the urn.  For each possible individual preference ranking, there are 
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 balls of a color that is associated with the 
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 possible individual preference ranking.  A ball is then drawn at random and the preference ranking that is associated with the color of the ball that is drawn is assigned to the first voter.  The ball is then replaced, along with 
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 additional balls of the same color. A second ball is then drawn, the corresponding preference ranking is assigned to the second voter, and the ball is replaced along with 
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 additional balls of the same color.  The process is repeated n times to obtain a preference ranking on candidates for each of the n voters.  When 
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,  the color of the ball that is drawn for the first voter will have an increased likelihood of representing the color of the ball that is drawn for the second selection, and so on.  This type of model is a contagion model XE "contagion models"  that creates an increasing degree of statistical dependence among the voters’ preferences as 
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 increases.  However, there is no dependence among voters’ preferences for the particular case with 
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With P-E models, the probability, 
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By definition, 
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We give particular attention to the P-E probability
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which has Ai = 1 for all i = 1,2,3,4,5,6.  When we consider the special cases of 
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 = 0 and 
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 = 1, we obtain
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It follows that a P-E probability model with 
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 = 0 is equivalent to an independent voter model with a multinomial probability representing the probability that a given voting situation will be observed, with equal likelihood that each preference ranking will be selected on each draw to obtain a voter preference profile.   This situation is identical to a model that has been named the Impartial Culture Condition (IC) in the literature.   The form of 
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 leads to the conclusion that each possible voting situation is equally likely to be observed, given n, for a P-E model with 
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 = 1.  This is equivalent to a model that has been called Impartial Anonymous Culture Condition (IAC) in the literature.


Work has been done to develop representations for the Condorcet Efficiency of various voting rules with different assumptions regarding the probability model that is used to generate random voting situations.  Let 
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 denote the Condorcet Efficiency of plurality rule for three-candidate elections with n voters, given that voting situations are generated at random with a P-E model that uses parameter 
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Gehrlein XE "Gehrlein"  and Fishburn (1978a, 1978b) obtain a representation for the limiting value of 
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where, 
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Here, 
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 is the real part of the dilogarithmic function with a complex argument.  Lewin XE "Lewin"  (1958) describes the dilogarithmic function in detail and gives an infinite series form for calculating numerical values of 
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Gehrlein XE "Gehrlein"  (1982) develops a representation for 
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 by algebraic techniques for the special case of IAC, and Gehrlein (2002) develops a computer algorithm (EUPIA) that can be used to obtain the same type of representation, with
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In the limit that 
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.  It was noted above that increasing 
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 in a P-E model increases the degree of statistical dependence among voters’ preferences.  Since 
[image: image119.wmf](

)

(

)

1

3

PE

|

,

CE

PR

¥

>
[image: image120.wmf](

)

(

)

0

3

PE

|

,

CE

PR

¥

, this all suggests that increasing the degree of dependence among voters’ preferences will increase the Condorcet Efficiency of plurality rule, in complete agreement with H2.  Berg (1985b) also obtains the same limiting value for 
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Lepelley, et al (2000a) use Monte-Carlo simulation analysis to find that 
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.  Berg and Bjurulf (1983) argue that any differences between IC and IAC become insignificant for 
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.  Lepelley, et al (2000b) and Gehrlein (1995, 2003a) obtain computed values of 
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 for various odd n and for numerous values of 
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 to show that 
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 consistently increases as 
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 increases for any given odd n.

Our earlier discussion of P-E models with  Ai = 1 for all i = 1,2,3,4,5,6 indicates that increasing 
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 results in an increase in statistical dependence among voters’ preferences.  This observation falls short of suggesting that P-E models imply some form of “coherence” among voters’ preferences.  For example, with a large value of 
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 there is a high probability that the second voter will have a preference ranking on the candidates that is identical to those of the first voter.  The probability that the second voter has some preference ranking that is different than that of the first voter is then equally distributed over all of the other possible rankings on candidates.  In a homogeneous population of voters, it could easily be argued that there is a high probability that the second voter will have preferences that are identical to the first voter.  And, if the second voter does have different preferences than the first voter, it is not expected that there would be radical differences in the preference rankings of the two voters.  This would suggest that all preferences rankings that are different than the one chosen for the first voter would not be equally likely to be selected for the second voter.  Other scenarios that describe coherence among voters’ preferences are also plausible, such as the case of societies with polarized preferences.  The conditions of perfectly single-peaked preferences, perfectly single-troughed preferences and perfectly polarized preferences would each require the P-E model to start with Ai = 0 for two of the rankings.  As a result of all of this, the use of parameter 
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 gives a rather rough measure of coherence among voters’ preferences.
The study of H2 with P-E models that has been presented so far is based on what Gehrlein (2006a) refers to as using 
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 as a “population specific measure” of agreement in voters’ preferences.  That is, by increasing  
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 for the P-E model that randomly generates a voting situation, we expect an increase in the Condorcet Efficiency of plurality rule for voting situations that are generated.  However, every possible voting situation could be generated, with some probability, for any finite 
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.  The relationships that are expressed in both H1 and H2 should be reflected with greater strength if instead “situation specific measures” of agreement in voters’ preferences are considered.   These measures evaluate parameters of the specific voting situations that are being considered, rather than using parameters of the population from which they are selected.  Parameters b, t, and c in the preceding section are examples of situation specific measures of agreement in voters’ preferences, and we continue by examining studies that have considered H2 in the context of situation specific measures of agreement in voters’ preferences.

Gehrlein and Lepelley (1999) develop a representation for 
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 in three-candidate elections using the Maximal Culture Condition (MC) with parameter L.  MC does not have a fixed number of voters, but uses an integer value of L to define the maximum number of voters that could have any of the possible complete preference rankings on candidates.  Then, each 
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 is selected from a uniformly random distribution over the integers 
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Gehrlein (1987) conducts a Monte-Carlo simulation study to examine H2 from the perspective of MC as 
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 for each i = 1,2,3,4,5,6  and values of the proportion, 
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, of all voters with each preference ranking in a voting situation was obtained by normalizing the 
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 values.  That is, each 
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. It was then determined if a PMRW existed in the voting situation, based on the resulting 
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 values, and each observation was discarded for which a PMRW was not found to exist.  The process was repeated until 1,000,000 voting situations were found for which a PMRW existed.


Following notions from Fishburn (1973), the agreement among voters’ preferences was calculated for each of the voting situation by using Kendall’s Coefficient of Concordance, which is a standard measure of agreement between sets of ordinal rankings.  The voting situations were then partitioned into quintiles of increasing levels of concordance, and the proportion of voting situations within each quintile was found for which plurality rule elected the PMRW.   The resulting proportion estimates of 
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 were found to increase significantly as the measure of concordance increased.  This observation gives strong support to H2 with regard to plurality rule.


Some obstacles to believing the general veracity of H2 started to become visible in Gehrlein (1973) when some other common voting rules were found to have the exact opposite results that were observed with plurality rule, behaving in a fashion that was quite contrary to the general notions in H2.  Some explanations were given in an attempt to explain the observations that were made.  


Merrill (1988) summarizes earlier Monte-Carlo simulation studies and presents some new results that are related to the Condorcet Efficiency of a set of voting rules.   In this study, voters evaluate candidates on the basis of the respective stands that these candidates take on k different issues.  It is assumed that all possible candidate positions on a given issue can be evaluated on the basis of some measurable characteristic of that issue.  Each voter then has some ideal value for the measurable characteristic for each issue that expresses the position that the voter would most prefer to see a candidate adopt on that issue.   A given point in a spatial model with a k-dimensional issue space is then used to identify each voter’s overall ideal point for a candidate over the k issues in that space.  Similarly, each candidate is identified by a point in the k-dimensional issue space, based on the stands that they actually take on the issues.  A voter’s preference ranking on the candidates is then obtained on the basis of the Euclidean distances between the voter’s ideal point and the points that represent candidates’ stands.  That is, the candidate that has taken a position that is closest to a voter’s ideal point, based on Euclidean distance, will be that voter’s most preferred candidate, and so on.


The study is based on Monte-Carlo simulation study that generates a set of n random ideal position points to represent the voters and a set of m random position points that are taken by the candidates.  The distributions from which these two sets of points are randomly selected both have the same origin, and both are generated from multivariate normal distributions.  As the parameters of the respective multivariate normal distributions are changed, the Condorcet Efficiency of all voting procedures that are considered decreases as m increases.  


A reduction in the relative dispersion of candidates’ positions, making them more IC-like, results in significant reductions in the Condorcet efficiency of Plurality Rule, in agreement with H2.  However, the Condorcet Efficiency of some of the other rules remains almost unchanged with this change in dispersion.  In an extension, an additional random variable is added to account for voters’ perceptual uncertainty regarding the position points of candidates.  As the degree of perceptual uncertainty increases, suggesting more fuzziness in the perception of candidates’ positions, the Condorcet Efficiency of plurality rule increases significantly, which does not support the general notions behind H2.  When a bipolar multivariate distribution is used to generate ideal points for voters and for position points of candidates in the issue space, a reduction in Condorcet Efficiency is observed for the voting rules that are considered.  This observation does not support H2 with regard to the notion of using proximity to perfectly polarized preferences to measure group coherence. 
Lepelley (1995)  began the analysis of the impact of group coherence on the Condorcet Efficiency of voting rules by considering the impact that restricting voters to have perfectly single-peaked preferences has on Condorcet Efficiency.  A limiting representation is developed that can be used to find the value as 
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 assumes that only voting situations that are perfectly single-peaked can be observed and that each of these perfectly single-peaked voting situations is equally likely to be observed.  Gehrlein (2003b) uses EUPIA to obtain a representation for 
[image: image155.wmf](

)

(

)

0

3

b

PR

IAC

|

n

,

CE

, and 

[image: image156.wmf](

)

(

)

(

)

(

)

5

1

36

81

153

183

31

0

3

2

3

+

+

+

+

+

=

n

n

n

n

n

n

IAC

|

n

,

CE

b

PR

, for n = 9,15,21,27…
Both results lead to the conclusion that 
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  Comparing this observation with the earlier result that 
[image: image158.wmf](

)

(

)

8815

135

119

1

3

.

/

PE

|

,

CE

PR

»

=

¥

, we see that the imposition of the condition of perfectly single-peaked preferences does nothing to improve the Condorcet Efficiency of plurality rule compared to the case with IAC.


This observation is quite contrary to expectations according to H2, and further observations in Lepelley (1995) lead to real questions about the veracity of H2.  In particular, while the condition of perfect single-peakedness has no impact on the Condorcet Efficiency of plurality rule, it is found that perfect single-peakedness does have a significant impact on the Condorcet Efficiency of some other voting rules.
In conclusion, there has been some substantial support for the idea of H2 in the literature, but some other observations leave serious concerns about the general veracity of H2.  

A Representation for 
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Given the observation that 
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, it is of significant interest to consider the general behavior of 
[image: image162.wmf](

)

(

)

k

IAC

|

n

,

CE

b

PR

3

 as k increases.  A representation for 
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 will be very useful in determining the general veracity of H2 for plurality rule.  EUPIA2 was used to obtain such a representation.  The EUPIA2 procedure is explained in detail in Gehrlein (2005, 2006a, 2006b).  While the logic behind the procedure is quite direct, the process becomes very cumbersome to obtain a representation for 
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.  The result is presented here without further development, since it can be verified by computer enumeration.  Details of the derivation will be provided upon request.  For odd 
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While this representation for 
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 has been verified by computer enumeration for each n = 3(2)245, its extremely complex nature makes it of little direct use.  However, it does provide a basis for considering the limiting representation of 
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Table 2 lists computed values of 
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, and the first observation from these values is that 
[image: image178.wmf](

)

(

)

k

b

PR

IAC

|

,

CE

a

¥

3

 is not monotonic.  Of primary interest is the surprising fact that 
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 generally tends to increase as  
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 increases, particularly for 
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.  Thus, the Condorcet Efficiency of plurality generally tends to increase as voting situations become farther removed from the condition of perfect single-peakedness, as measured by b.  This observation is completely contrary to the ideas expressed by H2.
Table 2. Computed values of 
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	.00
	.8611
	1.0000
	.8611

	.01
	.8643
	.9963
	.8638
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	.8674
	.9925
	.8662
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	.8683
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	.8728
	.9850
	.8702
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	.8752
	.9811
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	.8811
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	.8826
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	.8839
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Given earlier observations about the expectation of proximity to single-peaked preferences having the same impact as proximity to single-troughed preferences, it might seem unnecessary to develop a representation for 
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.  However, intuition leads to the wrong conclusion in this case, as we can see from the following observation regarding perfectly single-troughed preferences.
Lemma 1.  
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Proof.   If a voting situation represents perfectly single-troughed preferences with 
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, some candidate is never ranked as most preferred by any voter.  The two remaining candidates must then occupy the first place preferences off all voters.  One of these remaining two candidates must therefore be ranked as most preferred by at least 
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 of the voters when n is odd.  That candidate must therefore by definition be both the PMRW and the winner by plurality rule.



QED

This observation starts to suggests that H2 might very well be valid when proximity of voters’ preferences to the condition of perfectly single-troughed preferences is used as a measure of underlying group coherence.

A Representation for 
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EUPIA2 was used to develop a representation for 
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This representation is much more tractable that the earlier representation for 
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, but following previous discussion attention is focused on the limiting probability 
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Computed values of 
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 are listed in Table 2, where results are found that are completely consistent with H2.  It is seen that 
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 increases, so that the Condorcet Efficiency of plurality rule does consistently decrease as voting situations become more removed from the condition of perfectly single-troughed preferences.  Moreover, the reduction in Condorcet Efficiency is quite dramatic as 
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 increases, dropping from 1.0000 to 0.3460 over the range of 
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 values.  Since these results are reversed from what we observed when considering 
[image: image211.wmf](

)

(

)

k

b

PR

IAC

|

,

CE

a

¥

3

, we are interested in obtaining a similar representation when the degree of group coherence is measured by voting situation proximity to perfectly polarized preferences.
A Representation for 
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EUPIA2 was used to develop a representation for 
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The complexity of this representation is quite extreme, and the EUPIA2 algorithm was found to be incapable of obtaining results that would lead to a representation for 
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Lepelley, et al (2006) observed that the EUPIA2 procedure finds representations that fall into a much larger class of problems that are the subject of Ehrhart polynomials. Calculating the probability that some event takes place under variations of IAC is tantamount to computing the number of points with integer coordinates in a set described by a finite system of linear constraints (with rational coefficients) depending on one or more parameters (n and k in our study).  Ehrhart’s theory and its later refinements have shown that this number of points can be represented by a family of polynomials in n and k with periodic coefficients. Numerous studies exist in applied mathematics and in the computer science literature that propose different ways for computing Ehrhart polynomials. The most efficient algorithm is probably the one of Barvinok and Pommersheim (1999). Lepelley, et al (2006)  present a brief description of this algorithm.



This algorithm was used to obtain results that provide representations for 
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.  However, the extreme complexity of these representations resulted in our focusing on a representation that is valid only for all 
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.  After much algebraic reduction, for all 
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The limiting probability representations for 
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The first interesting observation that comes from these limiting representations is that 
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 increases, contrary to the expectation of H2.

It can be argued that this violation of H2 when using proximity to perfectly polarized preferences is not very surprising.  A society can have preferences that are highly polarized, while each member of the society forms their preferences in a perfectly rational manner.  For example, liberal and conservative voting blocs might very well have reversed preference rankings on candidates since they tend to be primarily focused on different attributes of candidates’ positions.  The voters of such a society are forming preferences in a mutually coherent fashion, but the preferences of these voters are definitely not homogeneous, or in mutual agreement.  Based on this observation, it can be argued that H2 should be restated as H2’ with:
H2’ – The Condorcet efficiency of voting rules tends to increase as the voters’ preferences show an increased degree of homogeneity.


Our observations show that proximity to perfectly single-troughed preferences clearly supports H2’ with voting by plurality rule, and that proximity to perfectly polarized preferences also does so in the sense that increased polarization reflects decreased homogeneity. However, results for proximity to perfectly single-peaked preferences clearly still does not support H2’ for plurality rule.
Conclusion

Earlier work has shown that there is a very large probability of having a PMRW in voting situations with a small number of candidates when voters’ preferences are mutually coherent in the sense that they are at all close to being perfectly single-peaked, perfectly single-troughed or perfectly polarized.  This finding raises interest in the consideration of the Condorcet Efficiency of voting rules.  We find that the widely used plurality rule has Condorcet Efficiency values that behave in very different ways under each of these three models of mutual coherence.  As a result there is no clear-cut answer to the question: Is it a good idea to use plurality rule?  

In societies in which voters’ preferences are at all close to being perfectly single-troughed, plurality rule has very large values of Condorcet Efficiency.  When voters’ preferences are at all close to being perfectly polarized, plurality rule does not have large values of Condorcet Efficiency.  The most surprising result is that plurality rule does not have large values of Condorcet Efficiency when voters’ preferences are at all close to being perfectly single-peaked.  Extensive analysis is clearly called for to identify the different scenarios of mutual consistency of preferences for which various voting rules will tend to have the maximum value of Condorcet Efficiency.
References

Arrow KJ (1963) Social choice and individual values (2nd ed). Yale University Press, New Haven CT. 

Barvinok A, Pommersheim J (1999) An algorithmic theory of lattice points in polyhedra. New Perspectives in Algebraic Combinatorics 38: 91-147.
Berg S (1985a) Paradox of voting under an urn model: The effect of homogeneity. Public Choice 47: 377-387. 
Berg S (1985b) A note on plurality distortion in large committees. European Journal of Political Economy 1/2: 271-284.
Berg S, Bjurulf B (1983) A note on the paradox of voting: Anonymous preference profiles and May's formula. Public Choice 40: 307-316.
Black D (1958) The theory of committees and elections. Cambridge University Press, Cambridge.

Condorcet M de (1785) An essay on the application of probability theory to plurality decision making: Elections. In: Sommerlad F, McLean I (1989, eds) The political theory of Condorcet. University of Oxford Working Paper, Oxford, pp 81-89. 
Fishburn PC (1973) Voter concordance, simple majority, and group decision methods. Behavioral Science 18: 364-376.
Gehrlein WV (1982) Condorcet efficiency and constant scoring rules. Mathematical Social Sciences 2: 123-130. 
Gehrlein WV (1987) The impact of social homogeneity on the Condorcet efficiency of weighted scoring rules. Social Science Research 16: 361-369.
Gehrlein WV (1995) Condorcet efficiency and social homogeneity. In: Barnett, Moulin, Salles, Schofield (eds) Social choice, welfare and ethics. Cambridge University Press, Cambridge, pp 127-143.
Gehrlein WV (2002) Obtaining representations for probabilities of voting outcomes with effectively unlimited precision integer arithmetic. Social Choice and Welfare 19:503-512.
Gehrlein WV (2003a) Weighted scoring rules that maximize Condorcet efficiency.  In: Sertel M, Koray S (eds) Advances in Economic Design.  Springer, Berlin, pp 53-63. 

Gehrlein WV (2003b) Condorcet efficiency and proximity to single-peaked preferences.  Presented at Third International Conference on Logic, Game Theory and Social Choice, September 2003, Siena, Italy, 282-283.
Gehrlein WV (2005) Probabilities of election outcomes with two parameters: The relative impact of unifying and polarizing candidates. Review of Economic Design 9: 317-336.

Gehrlein WV (2006a) Condorcet’s Paradox.  Springer Publishing, Heidelberg.
Gehrlein WV (2006b) The sensitivity of weight selection for scoring rules to proximity to single peaked preferences. Social Choice and Welfare 26: 191-208. 
Gehrlein WV, Fishburn PC (1978a) Probabilities of election outcomes for large electorates. Journal of Economic Theory 19: 38-49. 

Gehrlein WV, Fishburn PC (1978b) Coincidence probabilities for simple majority and positional voting rules. Social Science Research 7: 272-283. 

Gehrlein WV, Lepelley D (1999) Condorcet efficiencies under the maximal culture condition. Social Choice and Welfare 16: 471-490.
Johnson NL, Kotz S (1977) Urn models and their application. Wiley, New York. 
Lepelley D (1995) Condorcet efficiency of positional voting rules with single-peaked preferences. Economic Design 1: 289-299.
Lepelley D, Louichi A, Valognes F (2000a) Computer simulations of voting systems. In: Ballot G, Weisbuch G (eds) Applications of simulations to social sciences. Hermes, Oxford. 

Lepelley D, Pierron P, Valognes F (2000b) Scoring rules, Condorcet efficiency, and social homogeneity. Theory and Decision 49: 175-196.
Lepelley D, Louichi A, Smaoui H (2006) On Ehrhart polynomials and probability calculations in voting theory.  Unpublished manuscript, Université de La Réunion.
Lewin, L (1958) Dilogarithms and associated functions. Macdonald Press, London. 

Merrill S (1988) Making multicandidate elections more democratic. Princeton University Press, Princeton, NJ.
Niemi RG (1969) Majority decision-making under partial unidimensionality. American Political Science Review 63: 488-497. 
Paris DC (1975) Plurality distortion and majority rule. Behavioral Science 20: 125-133.

Satterthwaite M (1972) Coalition constructing voting procedures. Presented at Public Choice Society Meeting, Pittsburgh, PA.
Vickery W (1960) Utility, strategy and social decision rules. The Quarterly Journal of Economics 74: 507-535. 

Ward B (1965) Majority voting and alternative forms of public enterprise. In: Margolis J (ed) Public economy of urban communities. Johns Hopkins Press, Baltimore, MD, pp 112-126. 

PAGE  
21

_1219490675.unknown

_1219581138.unknown

_1221391669.unknown

_1221643118.unknown

_1221651469.unknown

_1221660760.unknown

_1221730242.unknown

_1222351971.unknown

_1222352093.unknown

_1222774937.unknown

_1221730311.unknown

_1222351873.unknown

_1221730263.unknown

_1221660796.unknown

_1221729848.unknown

_1221660772.unknown

_1221659576.unknown

_1221660245.unknown

_1221660617.unknown

_1221660185.unknown

_1221659308.unknown

_1221659343.unknown

_1221651683.unknown

_1221650480.unknown

_1221651337.unknown

_1221651455.unknown

_1221650552.unknown

_1221643205.unknown

_1221643254.unknown

_1221643300.unknown

_1221643358.unknown

_1221643284.unknown

_1221643241.unknown

_1221643153.unknown

_1221643191.unknown

_1221643133.unknown

_1221392025.unknown

_1221466782.unknown

_1221473720.unknown

_1221474948.unknown

_1221640983.unknown

_1221642120.unknown

_1221642128.unknown

_1221642112.unknown

_1221640726.unknown

_1221575545.unknown

_1221473807.unknown

_1221473937.unknown

_1221473748.unknown

_1221468704.unknown

_1221473005.unknown

_1221473100.unknown

_1221473310.unknown

_1221469624.unknown

_1221470166.unknown

_1221470173.unknown

_1221468822.unknown

_1221468621.unknown

_1221468672.unknown

_1221467112.unknown

_1221467461.unknown

_1221468089.unknown

_1221466982.unknown

_1221455204.unknown

_1221466229.unknown

_1221466772.unknown

_1221466104.unknown

_1221461403.unknown

_1221465891.unknown

_1221461212.unknown

_1221461240.unknown

_1221461368.unknown

_1221456252.unknown

_1221453519.unknown

_1221453966.unknown

_1221392026.unknown

_1221391858.unknown

_1221391905.unknown

_1221391925.unknown

_1221392023.unknown

_1221392024.unknown

_1221391939.unknown

_1221391915.unknown

_1221391879.unknown

_1221391897.unknown

_1221391868.unknown

_1221391741.unknown

_1221391832.unknown

_1221391843.unknown

_1221391794.unknown

_1221391691.unknown

_1221391698.unknown

_1221391678.unknown

_1220096550.unknown

_1221391484.unknown

_1221391619.unknown

_1221391641.unknown

_1221391653.unknown

_1221391632.unknown

_1221391572.unknown

_1221391585.unknown

_1221391562.unknown

_1220177208.unknown

_1220177595.unknown

_1220269828.unknown

_1221391463.unknown

_1221388691.unknown

_1220260650.unknown

_1220260701.unknown

_1220177399.unknown

_1220177466.unknown

_1220177341.unknown

_1220177014.unknown

_1220177055.unknown

_1220096646.unknown

_1219749823.unknown

_1220087509.unknown

_1220089734.unknown

_1220096365.unknown

_1220088283.unknown

_1220087358.unknown

_1220087388.unknown

_1220087392.unknown

_1220087396.unknown

_1220087381.unknown

_1219749854.unknown

_1219581424.unknown

_1219749215.unknown

_1219749588.unknown

_1219743466.unknown

_1219748803.unknown

_1219743356.unknown

_1219581332.unknown

_1219581391.unknown

_1219581266.unknown

_1219581312.unknown

_1219499540.unknown

_1219575779.unknown

_1219579147.unknown

_1219579569.unknown

_1219579615.unknown

_1219579494.unknown

_1219579379.unknown

_1219578200.unknown

_1219578851.unknown

_1219579034.unknown

_1219579116.unknown

_1219578843.unknown

_1219577187.unknown

_1219578125.unknown

_1219576921.unknown

_1219500480.unknown

_1219504448.unknown

_1219500247.unknown

_1219500318.unknown

_1219500341.unknown

_1219500108.unknown

_1219500039.unknown

_1219500081.unknown

_1219499364.unknown

_1219499396.unknown

_1219497433.unknown

_1219497469.unknown

_1219497569.unknown

_1219491245.unknown

_1219495741.unknown

_1219497295.unknown

_1219491253.unknown

_1219491237.unknown

_1219490833.unknown

_1163564862.unknown

_1219484963.unknown

_1219485896.unknown

_1219490629.unknown

_1219490570.unknown

_1219485626.unknown

_1219485846.unknown

_1163745156.unknown

_1219232655.unknown

_1163565074.unknown

_1163564603.unknown

_1163564626.unknown

_1163564655.unknown

_1163564611.unknown

_1163564587.unknown

_1163564595.unknown

_1163564535.unknown

