
On the Likelihood of Dummy Players

in Weighted Majority Games
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Abstract

When the number of players is small in a weighted majority voting game, it can occur that one of

the players has no influence on the result of the vote, in spite of a strictly positive weight. Such

a player is called a “dummy” player in game theory. The purpose of this paper is to investigate

the conditions that give rise to such a phenomenon and to compute its likelihood. It is shown

that the probability of having a dummy player is surprisingly high and some paradoxical results

are observed.
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1 Introduction

The main teaching of the literature on power indices is that, in a collective choice process,

voting power or influence need not to be proportional to the relative number of votes (weight)

an individual or a group (player) is entitled to. An extreme and striking consequence of this

non proportionality is that a player can have a positive weight but never be a member of a

minimal winning coalition (a coalition that wins and the removal of a single player does not

allow the coalition to win any longer). Such players have no voting power and are known as

dummies.

The most famous example of this somewhat paradoxical phenomenon is offered by Luxembourg

in the Council of Ministers of the EU between 1958 and 1973. Luxembourg held one vote,

whereas the quota for a proposition to be approved was 12 out of 17. Since other member

states held an even number of votes (4 for Germany, France and Italy, 2 for Belgium and The

Netherlands), Luxembourg formally was never able to make any difference in the voting process

and was a dummy.

Another well known case of dummies involves Nassau County, New York (Banzhaf, 1965).

Nassau County’s government took the form of a Board of Supervisors, one representative for

each of various municipalities, who cast a block of votes. Here are the weighted voting systems

used at various times by Nassau County. The passing quota shown reflects the number of votes

needed to pass “ordinary legislation”.

1958 1964

Hempstead 1 9 31

Hempstead 2 9 31

North Hempstead 7 21

Oyster Bay 3 28

Long Beach 1 2

Glen Cove 1 2

Total votes 30 115

Quota 16 58

The numerical weights were chosen to try to take into account the populations of the different

municipalities, which were quite disparate. It is easy to see that in 1958, Oyster Bay, Long

Beach and Glen Cove were dummies. It can also be checked that, in 1964, there were three

dummies (North Hempstead, Glen Cove and Long Beach). After 1964, the quota was raised to

guarantee that no municipality was a dummy.

A third example of dummy has recently been discovered by one of the authors (see Blancard

and Lepelley, 2010) in a community of municipalities in La Réunion Island (France). This com-

munity, called CIVIS (Communauté Intercommunale des VIlles Solidaires), gathered between

1997 and 2008 five municipalities: Saint-Pierre (15 representatives in the community council),

Saint-Louis (10 representatives), L’Etang-Salé (5), Petite-Ile (5) and Cilaos (4), the number of

representatives being roughly proportional to the municipality population. In the community
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Council, 20 votes were necessary for a proposition to be accepted. If we suppose that the rep-

resentatives of a municipality were voting as a block, it can be seen that Cilaos was a dummy:

all the winning coalitions containing Cilaos remain winning when this municipality is removed.

It is worth noticing that in 2008 a sixth municipality has entered the community and Cilaos is

no more a dummy.

The possibility of dummy players is clearly problematic from a democratic point of view and

the diversity of the examples given above suggests that the occurrence of dummies in voting

games is of practical concern and could be less rare that expected in first analysis. What is

the likelihood of such an undesired phenomenon ? How the distribution of weights should be

arranged in order to avoid the occurrence of dummies in voting games?

We propose in this paper a theoretical investigation of these issues in the context of weighted

majority games, where the quota is equal to the half of the total number of votes, plus one.

Our framework and our main assumptions are introduced in Section 2. We propose some

analytical results in Section 3 for weighted voting games with 4, 5 and 6 players: in each

case, we characterize the distributions of weights giving rise to the occurrence of the “dummy

paradox” and deduce from these characterizations some representations for the likelihood of

the paradox as a function of the total number of votes. Section 4 proposes both exact and

estimated numerical results for the likelihood of dummy players for more than 6 players. Our

results are discussed in Section 5, where we study the impact of a reduction of the weight

scattering on the probability of having some dummies. Section 6 concludes the paper.

2 Framework and assumptions

We will adopt the following notation:

Let m be the number of players, with m ≥ 3. The players are denoted by J1, J2, ..., Jm.

Let ni be the weight of player i and n =
∑

i ni. Hence, ni can be interpreted as the number

of votes assigned to a member Ji of a voting body. Notice however that, when the players are

parties in a political assembly, the ni’s correspond to the number of representatives of each

party and n is the total number of votes in the assembly.

As mentioned above, we only consider in the present study Weighted Majority Games (WMG):

a proposition is adopted if and only if the total weight of the players in favor of this proposition

is greater or equal to n/2 + 1 if n is even and to (n + 1)/2 if n is odd. In what follows, this

majority quota will be denoted by Q = [n/2]+, where [x]+ is the smallest integer strictly higher

than x. So, a coalition S is winning if and only if
∑

i∈S ni ≥ Q; otherwise, the coalition is said

to be loosing. A player Ji is a dummy if and only if, for each winning coalition S including Ji,

S − {Ji} is still winning.

Our main assumptions are the following:

(1) the ni’s are integer,

(2) n/2 ≥ n1 ≥ n2 ≥ ... ≥ nm ≥ 1,
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(3) m and n being given, all the distributions of the ni’s verifying (1), (2) and n =
∑

i ni are

equally likely to occur.

The two first assumptions are rather innocuous. The third one is reminiscent of the Impartial

Anonymous Culture condition often used in voting theory to compute the probability of various

voting events: all the admissible “voting situations” are considered as equiprobable. This

assumption generally allows to obtain close form representations for the probabilities we are

interested in (see e.g. Gehrlein, 2002 ; Wilson and Pritchard, 2007).

Notice that this framework fits well with the (recent) French local entities called EPCI (Etab-

lissement Public de Cooperation Intercommunale) where each municipality belonging to the

EPCI is given a number of delegates approximately proportionate to its number of inhabi-

tants1. In this context, n1 is the number of delegates of the biggest municipality in the EPCI

council, nm the number of delegates of the smallest, and n is the total number of delegates in

the EPCI council (we suppose that, in this council, the delegates of a given municipality vote

as a block). Of course, the biggest municipality should not be a dictator (n1 ≤ n/2) and the

smallest one should obtain at least one delegate. In the EPCI council, the current decisions are

taken with a quota Q = [n/2]+.

3 Some analytical results

We begin our analysis with a preliminary result, which is true whatever the number of players.

Proposition 1 In a m-player WMG, (i) the maximum number of possible dummies is equal

to m− 3 and (ii) the number of dummies is exactly m− 3 if and only if n2 + n3 ≥ Q.

Proof. In order to prove (i), we have to show that J3 cannot be a dummy in a m-player majority

game, m ≥ 3. Suppose the contrary: J3 is a dummy. A first consequence is that J4, J5, ..., Jm

are also dummies. Furthermore, the coalition {J1, J3} is loosing (if this coalition was winning,

the fact that J3 is a dummy would imply that n1 > Q, contradicting our assumptions). Now,

if {J1, J3} is loosing, then {J1, J3, J4} is also loosing since J4 is a dummy. Similarly, as

J5 is a dummy, the coalition {J1, J3, J4, J5} is loosing and we can set in the same way that

{J1, J3, J4, ..., Jm} is loosing, which implies n1 + n3 + n4 + n5 + ... + nm < Q. As
∑

i ni = n,

we would have n2 ≥ Q− 1 and thus n2 + n3 ≥ Q which is not possible since J3 is a dummy.

Consider now assertion (ii) and suppose that n2 + n3 ≥ Q. Let’s show this implies that

J4 is a dummy. Consider the winning coalitions including J4. As n2 + n3 ≥ Q implies

n1 +n4 +n5 + ...+nm < Q, it can be observed that both the coalition {J4, J5, ..., Jm} and the

coalition {J1, J4} are loosing. It follows from this observation that the only winning coalitions

with J4 must include two players among {J1, J2, J3}. As n2 + n3 ≥ Q and n1 ≥ n2 ≥ n3, we

have n1 + n3 ≥ Q and n1 + n2 ≥ Q. Consequently, the defection of J4 in these coalitions lets

them winning and J4 is a dummy.

1The CIVIS we have mentioned in the Introduction is an example of EPCI.
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Finally, suppose that J4 is a dummy. This implies that the coalition {J1, J4} is loosing (if

not, J4 dummy would imply n1 ≥ Q, a contradiction) and thus n1 < Q or n1 ≤ Q − 1. As

J5, J6, ..., Jm are (also) dummies and ni > 0, it follows that n1+n4+n5+...+nm < Q−(m−3)

(with m ≥ 4). This implies that n2 + n3 ≥ Q. 2

Two straightforward corollaries are the following.

Corollary 1 There is no dummy player in a 3-player WMG.

Corollary 2 In a 4-player WMG, J4 is a dummy player if and only if n2 + n3 ≥ Q.

Notice that Corollary 1 is only true when WMG’s are under consideration; if the quota differs

from Q = [n/2]+, then it is easy to check that a dummy can exist in a 3-player weighted voting

game (see e.g. Leech, 2002).

Corollary 2 gives a complete (and simple) characterization of the admissible distributions of

weights that give rise to a dummy in 4-player WMG’s. For instance, for n = 13 (and Q = 7),

J4 is a dummy with the weight distribution given by the vector (n1, n2, n3, n4) = (4, 4, 3, 2),

but not with the distribution (6, 4, 2, 1).

For 5-player and 6-player WMG’s, the characterizations are more involved, as shown in the

following Proposition.

Proposition 2 (i) In a 5-player WMG, J5 is a dummy player if and only if one of the following

cases holds:

- case 1: n2 + n3 + n4 ≥ Q and n1 + n4 ≥ Q;

- case 2: n2 + n3 ≥ Q.

In case 2 (and only in this case), both J4 and J5 are dummy players.

(ii) In a 6-player WMG, J6 is a dummy player if and only if one of the following cases holds:

- case 1: n2 + n3 + n4 + n5 ≥ Q and n1 + n5 ≥ Q;

- case 2: n2 + n3 + n4 ≥ Q and n1 + n4 ≥ Q;

- case 3: n2 + n3 + n5 ≥ Q and n1 + n4 + n5 ≥ Q and n1 + n3 ≥ Q;

- case 4: n2 + n3 ≥ Q;

- case 5: n2 + n4 + n5 ≥ Q and n1 + n2 ≥ Q;

- case 6: n3 + n4 + n5 ≥ Q.

In case 2, J5 and J6 are dummy players; in case 4, J4, J5 and J6 are dummy players.

The proof of this proposition is given in Appendix.

Corollary 2 and Proposition 2 allow us to enumerate the distributions of the weights that give

rise to dummy players and to compute the probability of their occurrence in m-player WMG’s,

with m ∈ {4, 5, 6}. Moreover, it is possible to derive from Corollary 2 and Proposition 2

some representations for this probability as a function of n, the total number of votes. This

probability is denoted by P (m,n) in what follows.

Proposition 3 For n ≡ 9 modulo 12, the probability of having a dummy player in a 4-player

WMG is given as:

P (4, n) =
n2 − 33

2(n2 + 3n− 12)
.
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As a consequence, limn→∞P (4, n) = 1
2
.

Proof. Given our assumption (3) and for a given value of n, we have to divide the number of

those distributions of the ni’s that give rise to the occurrence of a dummy player (denoted by

D(4, n)) by the total number of possible distributions with 4 players (denoted by T (4, n)). We

begin by evaluating T (4, n). A vector of integers (n1, n2, n3, n4) is a possible distribution of the

weights if and only if

n1 ≥ n2, n2 ≥ n3, n3 ≥ n4, n4 ≥ 1, n1 ≤ n/2 and n1 + n2 + n3 + n4 = n.

We know from Ehrhart’s theory and its recent developments (the reader is referred to Lepelley

et al. (2008) for a presentation of this theory) that the number of integer solutions of such a set

of (in)equalities is a quasi polynomial in n with periodic coefficients (or Ehrhart’s polynomial).

A periodic coefficient takes various values according to n and to a given period. For example,

c(n) = [1
2
, 3

4
, 1]n is a periodic coefficient with period 3, c(n) = 1

2
if n ≡ 0 modulo 3, c(n) = 3

4

if n ≡ 1 modulo 3 and c(n) = 1 if n ≡ 2 modulo 3. Numerous algorithms exist to derive the

expression of such a quasi polynomial (see, once again, Lepelley et al. (2008)). Using one of

these algorithms, we obtain

T (4, n) = 1
288

n3+[ 1
32

, 1
48

]n n2+[ 1
24

,− 1
96

]n n+[0,− 1
72

,−17
72

,−1
4
, 1

9
, 7

72
,−1

8
,− 5

36
,−1

9
,−1

8
,− 1

72
,− 1

36
]n.

The period of such a quasi polynomial is the least common multiple of the periods of its coeffi-

cients, here 12. Consequently, the expression of T (4, n) corresponds to 12 distinct polynomials;

for instance, we obtain2 for n ≡ 9 modulo 12:

T (4, n) =
1

288
n3 +

1

48
n2 − 1

96
n− 1

8
=

(n + 3)(n2 + 3n− 12)

288
.

Now, according to Corollary 2, a dummy player exists if and only if

n1 ≥ n2, n2 ≥ n3, n3 ≥ n4, n4 ≥ 1, n1 ≤ n/2, n2 + n3 > n/2 and n1 + n2 + n3 + n4 = n.

The number of associated distributions of the ni’s is given as

D(4, n) = 1
576

n3 + [− 1
96

, 1
192

]n n2 + [− 1
24

,− 11
192

, 1
48

, 1
192

]n n+

[0, 29
576

,− 7
72

,− 7
64

, 2
9
,− 35

576
,−1

8
, 65

576
, 1

9
,−11

64
, 7

72
, 1

576
]n,

which implies, for n ≡ 9 modulo 12:

D(4, n) =
1

576
n3 +

1

192
n2 − 11

192
n− 11

64
=

(n + 3)(n2 − 33)

576
.

The expression of P (4, n) = D(4, n)/T (4, n) for n ≡ 9 modulo 12 directly follows, as well as

the limiting value3 P (4,∞) =
1

576
1

288

= 1
2
. 2

2Of course, the 11 other polynomials can be derived in the same way and are available from the authors
upon request.

3It is important to note that the coefficient of the leading term of the quasi polynomials is not periodic. This
peculiarity allows to easily obtain the desired probabilities for n large by considering only this coefficient in the
quasi polynomials.
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The two following Propositions are obtained along the same lines as Proposition 3 and their

proofs are omitted.

Proposition 4 For n ≡ 15 modulo 120, the probability of having dummy player(s) in a 5-

player WMG is:

P (5, n) =
5(n + 9)(7n3 − 51n2 + 165n− 801)

6(11n4 + 120n3 + 350n2 + 960n + 4815)
.

Consequently, the probability for P5 to be a dummy when n is large is: limn→∞P (5, n) = 35
66

.

And the limiting probability of having two dummy players (J4 and J5) when n is large is given

as 5
22

.

Proposition 5 The limiting probability of having at least one dummy player in a 6-player

WMG is given by: limn→∞P (6, n) = 155
312

. The limiting probability of having two dummies (J5

and J6) is 5
39

and the limiting probability of having three (J4, J5 and J6) is 5
52

.

Numerical values derived from our analytical results are shown in Tables 1 and 2. Table 1 gives

the probability of having at least one dummy in a WMG with 4, 5 or 6 players as a function

of the total number of votes n. These probabilities are surprisingly high and tend to increase

with n: for large values of n, a dummy exists in more than 40% of the weight distributions! It

is worth noticing that the probabilities are consistently higher with n odd than with n even.

In addition, the results in Table 2 show that even the probability of having more than one

dummy cannot be considered as negligible: in a 6-player WMG, three among the six players

are dummies in almost 10% of the possible weight distributions.

The next section deals with the cases with more than six players.
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Table 1

Probability P (m,n) of having a dummy player

as a function of n (the total number of votes) for m = 4, 5, 6.

n 4-player WMG 5-player WMG 6-player WMG

15 0.4375 0.2609 0.1818

18 0.2258 0.1778 0.0196

21 0.4146 0.2973 0.1978

24 0.2537 0.2302 0.0529

27 0.4578 0.3696 0.2731

30 0.3089 0.2827 0.1002

33 0.4490 0.3818 0.2905

36 0.3235 0.3087 0.1259

39 0.4684 0.4145 0.3310

42 0.3535 0.3398 0.1601

45 0.4637 0.4213 0.3407

48 0.3624 0.3553 0.1809

51 0.4747 0.4402 0.3641

54 0.3813 0.3757 0.2072

57 0.4718 0.4443 0.3711

60 0.3873 0.3859 0.2232

63 0.4789 0.4564 0.3869

66 0.4002 0.4002 0.2431

69 0.4770 0.4593 0.3918

72 0.4045 0.4075 0.2558

75 0.4820 0.4678 0.4028

78 0.4139 0.4181 0.2716

81 0.4806 0.4699 0.4066

84 0.4172 0.4235 0.2818

87 0.4842 0.4761 0.4149

90 0.4243 0.4316 0.2943

93 0.4832 0.4777 0.4177

96 0.4269 0.4359 0.3027

99 0.4860 0.4825 0.4241

. . .

199 0.4928 0.5061 0.4594

202 0.4645 0.4624 0.3935

. . .

limit 1/2 35
66

= 0.530 155
312

= 0.497
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Table 2

Probability P (m,∞) of having one, two or three dummies

for m = 4, 5, 6.

m 1 dummy 2 dummies 3 dummies Total

4 0.5 0 0 0.5

5 0.3030 0.2273 0 0.5303

6 0.2724 0.1282 0.0962 0.4968

4 Results for more than six players

Intuition suggests that the probability of having a dummy should decrease when the number of

players increases4. This intuition is based upon the so-called Penrose’s limit theorem (Penrose,

1952). Penrose’s limit theorem says that, in Weighted Majority Games, if the number of players

increases, then under certain regularity conditions, the ratio between the voting powers of any

two players converges to the ratio between their weights. As we have assumed that every voter

has a strictly positive weight, this theorem suggests that dummies should not exist when the

number of players is large enough.

The aim of this Section is to check and precise this conclusion. Unhappily, we cannot use the

same approach as above for more than 6 players. First, a complete characterization of the

weight distributions giving rise to dummies becomes too complex as soon as m ≥ 7; second,

the computing time necessary to implement the algorithms for obtaining Erhart polynomials

(see Proof of Proposition 3) is exponentially increasing when the number of variables involved

in the problem increases5 and it becomes practically impossible to obtain a result when the

number of variables is too large.

In order to obtain the desired probabilities for more than 6 players, we make use of two al-

ternative approaches. The first one gives exact results whereas the second one is based on

simulations and provides estimated probabilities.

Exact computations are done with an exhaustive list of all the possible vectors of weights for

a given number n of votes. For all these vectors (n1, . . . , nm), we check whether or not the last

player is pivotal (decisive) (remember that n1 ≥ n2 ≥ . . . ≥ nm). This is done using the Banzhaf

power index6: indeed, for most of power indices, a player is a dummy if and only if his (her)

power index value is null. This equivalence is true for the Banzhaf power index, which is the

easiest to calculate. We compute this index using a generating function approach which leads

to exact values (this point is fundamental as we are looking for a null value; this peculiarity

prevents from using approximation methods). Finally, the exact probability of having at least

one dummy player is the ratio between the number of times the last player Jm is never pivotal

(decisive) and the number of vectors (n1, . . . , nm) considered as admissible (with a uniform

4Notice however that P (3,∞) < P (4,∞), as shown in Section 3.
5Here, the variables are the ni’s and their number is equal to m.
6For a clear and simple presentation, see Straffin (1994).
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distribution of weights vectors, as assumed in the previous section).

Our simulations are based on random vectors of weights. The estimated probability of having

at least one dummy player is then obtained by dividing the number of times the last player Jm

is never pivotal (decisive) by the number of vectors (n1, . . . , nm) randomly generated. In order

to estimate the probability of a dummy player, two steps have to be considered. First, we have

to simulate a vector of weights for a given n and a given number of players m. This can be done

by using for instance the Rancom algorithm proposed by Nijenhuis and Wilf (1978). Second, we

have to check if there is at least one dummy player in the WMG associated to these weights.

This is done as mentioned above by using the Banzhaf power index. Then repeating these two

steps k times, we obtain the estimated probability as the proportion of weight distributions

leading to a dummy player:

P̂ (m, n, q) =
1

k

k∑
j=1

11
β

(j)
m

(
[q;n

(j)
1 ,...,n

(j)
i ,...,n

(j)
m ]

)
=0

where β
(j)
m

(
[q; n

(j)
1 , . . . , n

(j)
i , . . . , n

(j)
m ]

)
is the Banzhaf power index value for the mth player in

the jth simulation, and ∀j = 1, . . . , k, n(j) = (n
(j)
1 , . . . , nj

i , . . . , n
(j)
m ), corresponds to the jth

simulated vector of weights.

Table 3

Probability P (m,n) of having a dummy player

as a function of m for n = 45, n = 50, n = 95 and n = 100.

m n = 45 n = 50 n = 95 n = 100

4 0.4637 0.3735 0.4855 0.4297

5 0.4213 0.3020 0.4806 0.4003

6 0.3407 0.1931 0.4215 0.3091

7 0.2135 0.0858 0.3173 0.1869

8 0.1050 0.0299 0.2017 0.0862

9 0.0434 0.0091 0.0963 0.0304

10 0.0185 0.0030 0.0447 0.0108

11 0.0086 0.0012 0.0194∗ 0.0044∗

12 0.0044 0.0005 0.0098∗ 0.0017∗

13 0.0021 0.0002 0.0060∗ 0.0008∗

14 0.0007 0.0000 0.0038∗ 0.0005∗

15 0.0004 0.0000 0.0025∗ 0.0003∗

∗Simulated probabilities
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Table 4

Simulated7 probability P (m,∞) of having one, two ... or x dummies

Number of dummy players

m ≥ 1 1 2 3 4 5

4 0.4930 0.4930 0 0 0 0

5 0.5249 0.2983 0.2266 0 0 0

6 0.4931 0.2714 0.1275 0.0924 0 0

7 0.4353 0.2453 0.1046 0.0457 0.0398 0

8 0.3447 0.2103 0.0797 0.0293 0.0130 0.0124

9 0.2575 0.1725 0.0493 0.0196 0.0079 0.0037

10 0.1775 0.13160 0.0271 0.0100 0.00340 0.0023

11 0.1184 0.0963 0.0144 0.0041 0.0014 0.0007

12 0.0714 0.0604 0.0076 0.0018 0.0006 0.0002

13 0.0434 0.0394 0.0029 0.0006 0.0002 0+

14 0.0228 0.0213 0.0011 0.0002 0+ 0+

15 0.0123 0.0117 0.0005 0+ 0+ 0+

Table 3 gathers both exact results and estimates for P (m,n), with 4 ≤ m ≤ 15 and for some

specific values of n. As expected, P (m,n) monotonically decreases as m increases and this

decrease accelerates with m. However, for 10 players, the probability cannot be considered as

completely negligible (around 2% for n = 45 and around 5% for n = 95). Once again, the

discrepancy between odd and even values of n is worth noticing: for m = 13, the probability

is divided by 10.5 when n moves from 45 to 50, and by 7.5 for n moving from 95 to 100. This

observation strongly suggests to adopt an even value for n in order to minimize the probability

of having dummies.

The figures given in Table 4 have been obtained via simulations by taking n = 99, 999 and

provide estimates for P (m,∞). Notice that these results give some information about the

probability of having dummies when the weight vector is constituted by real numbers between

0 and 1/2 and summing up to 1 (all the possible weight vectors being considered as equally

likely). It turns out that, in this case, the probability of having at least one dummy is still

higher than 1% for m = 15.

5 Discussion and further results

The theoretical risk of having a dummy appears to be very high in WMG’s with a small number

of players. It can be suggested, however, that our calculations possibly overestimate this risk

in the case of the French EPCI’s, which very often try to reduce the spread of the numbers of

representatives in each city. How can we introduce more realism in our analysis ?

710,000 simulations have been conducted for m < 11 and 50,000 when m ≥ 11. The 0 notation corresponds
to an exact null probability value (see Proposition 1), while the 0+ notation corresponds to a null estimated
probability using 50,000 replications (in this case, the true probability could be positive).
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One approach is the following. Let k be the maximal fraction of the total weight given to the

“biggest” player: n1/n ≤ k. We wish to study the impact of parameter k on the probability

of having a dummy player. Under our other assumptions, k belongs to [ 1
m

, 1
2
]. When k = 1

2
,

we recover the situation we have studied in the preceding sections. With k = 1
m

, each player

obtains the same weight (assuming that kn is an integer), hence the same power and there is

no dummy. Let P (m,n, k) be the probability of having a dummy when J1 gets no more than

100k% of the total weight. It seems natural to conjecture that P (m,n, k) decreases when k

moves from 1
2

to 1
m

. The following results show that this conjecture does not hold for small

values of m and n large. We will only give the proof of the first Proposition.8

Proposition 6 In a 4-player WMG with n large, the probability of having a dummy player as

a function of k is given by the following representation:

P (4,∞, k) =
3

4
for

1

4
≤ k <

1

3

=
240k3 − 288k2 + 108k − 13

4(44k3 − 60k2 + 24k − 3)
for

1

3
≤ k ≤ 1

2
.

Proof. Let K be the maximal weight of J1, with k = K/n. In order to compute the desired

probability, we begin by evaluate the total number T (4, n, K) of distributions on the ni’s when

n1 is constrained to be lower or equal to K. T (4, n,K) is the number of integer solutions of

the following inequalities:

n1 ≥ n2, n2 ≥ n3, n3 ≥ n4, n4 ≥ 1, n1 ≤ K n1 + n2 + n3 + n4 = n and K ≤ n/2.

We have now two parameters, n and K, and the number of integer solutions is given by

bivariate quasi polynomials (see Lepelley et al.(2008)). Using an algorithm recently developed

by Barvinok (see e.g. Barvinok, 2008), we obtain for n even two distinct quasi polynomials

associated with two validity domains:

For n
4
≤ K < n

3
:

T (4, n,K) = − 1
144

n3 + ( 1
12

K + 5
48

)n2 + (−1
3
K2 − 5

6
K − 1

2
)n + 4

9
K3 + 5

3
K2 + 2K + c1;

For n
3
≤ K ≤ n

2
:

T (4, n,K) = 1
48

n3 + (−1
6
K − 3

16
)n2 + ( 5

12
K2 +−11

12
K + 5

12
)n− 11

36
K3 − 23

24
K2 − 2K + c2,

where c1 and c2 are periodic constants the value of which depends on both n and K.

Consider the first domain. As K = kn, it follows that, for n
4
≤ K < n

3
, i.e. for 1

4
≤ k < 1

3
:

T (4, n, k) = − 1
144

n3 + ( 1
12

kn + 5
48

)n2 + (−1
3
k2n2 − 5

6
kn− 1

2
)n + 4

9
k3n3 + 5

3
k2n2 + 2kn + c1

= (− 1
144

+ 1
12

k − 1
3
k2 + 4

9
k3)n3 + ( 5

48
− 5

6
k + 5

3
k2)n + (−1

2
+ 2k)n + c1.

Observe that, in order to compute the limiting probability P (4,∞, k), only the coefficient of

the leading term in n3 matters. For this reason, we will only give the coefficient of n3 of the

quasi polynomials we exhibit in the remaining of this proof.

8Although more cumbersome, the proofs of Proposition 7 and 8 are quite similar.

12



Proceeding as above, we obtain for the second domain, 1
3
≤ k ≤ 1

2
:

T (4, n, k) = ( 1
48
− 1

6
k + 5

12
k2 − 11

36
k3)n3 + ...

Consider now the number D(4, n,K) of distributions with a dummy player with n1 ≤ K. All

we have to do is to add to the above set of inequalities n2 + n3 > n/2. Replacing K by kn in

the quasi polynomials associated with this new set on inequalities gives:

For 1
4
≤ k < 1

3
: D(4, n, k) = (− 1

192
+ 1

16
k − 1

4
k2 + 1

3
k3)n3 + ...

For 1
3
≤ k ≤ 1

2
: D(4, n, k) = ( 13

576
− 3

16
k + 1

2
k2 − 5

12
k3)n3 + ...

We finally obtain:

For 1
4
≤ k < 1

3
:

P (4,∞, k) =
D(4,∞, k)

T (4,∞, k)
=
− 1

192
+ 1

16
k − 1

4
k2 + 1

3
k3

− 1
144

+ 1
12

k − 1
3
k2 + 4

9
k3

=
(4k−1)3

192
(4k−1)3

144

=
3

4
,

and for 1
4
≤ k < 1

3
:

P (4,∞, k) =
D(4,∞, k)

T (4,∞, k)
=

13
576
− 3

16
k + 1

2
k2 − 5

12
k3

1
48
− 1

6
k + 5

12
k2 − 11

36
k3

=
240k3 − 288k2 + 108k − 13

4(44k3 − 60k2 + 24k − 3)
. 2

Proposition 7 In a 5-player WMG with n large, the probability of having at least one dummy

player depends on k as shown in the following representation:

P (5,∞, k) = 0 for
1

5
< k <

1

4

=
5(4k − 1)3(44k − 23)

32(655k4 − 780k3 + 330k2 − 60k + 43)
for

1

4
< k <

1

3

=
−5(3264k4 − 3840k3 + 1440k2 − 192k + 5)

96(155k4 − 300k3 + 210k2 − 60k + 6)
for

1

3
< k <

1

2
.

Proposition 8 In a 6-player WMG with n large, the probability of having at least one dummy

player depends on k as shown in the following representation:

P (6,∞, k) =
5

12
for

1

6
< k <

1

5

=
186120k5 − 192600k4 + 79200k3 − 16200k2 + 1650k − 67

12(10974k5 − 12270k4 + 5340k3 − 1140k2 + 120k − 5)
for

1

5
< k <

1

4

= −5034240k5 − 7027200k4 + 3916800k3 − 1094400k2 + 153600k − 8669

768(2193k5 − 3465k4 + 2130k3 − 630k2 + 90k − 5)
for

1

4
< k <

3

10

=
5(1153152k5 − 1834560k4 + 1160640k3 − 364320k2 + 56760k − 3515)

768(2193k5 − 3465k4 + 2130k3 − 630k2 + 90k − 5)
for

3

10
< k <

1

3

= −5(282240k5 − 486720k4 + 331200k3 − 110880k2 + 18360k − 1211)

768(237k5 − 585k4 + 570k3 − 270k2 + 60k − 5)
for

1

3
< k <

3

8

=
5(307584k5 − 619200k4 + 498240k3 − 200160k2 + 39960k − 3163)

768(237k5 − 585k4 + 570k3 − 270k2 + 60k − 5)
for

3

8
< k <

1

2
.
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Numerical values for the probability of having at least one dummy player are displayed in

Table 5 for m = 4, 5 and 6. The results for four players show that this probability increases

monotonically when the spread of the weights is reduced and this conclusion is exactly the

converse of what could be expected. This somewhat paradoxical result can be explained as

follows. With four players, only two categories of weight distributions need to be considered

when n is large: either n2 + n3 > n/2 and there is a dummy, or n1 + n4 > n/2 and there

is no dummy. For k = 50%, the two categories have exactly the same likelihood (under our

probabilistic assumption) but reducing the value of k makes the distributions with n2+n3 > n/2

more frequent than the distributions with n1 + n4 > n/2. With five players, the results are

much more in accordance with our intuition: when k increases, the probability of observing

at least one dummy tends to increase. Notice however that this probability decreases when

k moves from 47% to 50%. For six players, the results we observe are once again surprising:

when k increases, the probability first decreases, then increases when k is about 27% and

decreases again when k becomes close to 50%. For small values of k (between 1/6 and 1/5),

the probability of having a dummy remains quite significant (more than 40%).

What is the impact of parameter k when considering more than six players? In order to

answer this question, we have conducted a simulation study allowing to estimate the desired

probabilities for m = 7, 8, 9 and 10. The results are shown in Table 69 and demonstrate that

our conjecture is true for seven players or more: the probability of having at least one dummy

monotonically decreases when the fraction of the total weight given to J1 decreases. Observe

however that this decrease is rather slow and that P (m,∞, k) remains high for k = 20%.

6 Concluding remark

We have shown in this paper that the probability of having at least one dummy player in

Weighted Majority Games with a small number of player is very high. This probability can

reach about 50% for 4, 5 or 6 players ; for more than 6 players, the probability decreases but we

have to consider more than 15 players for obtaining results lower than 1%. Of course, it can be

suspected that our probabilistic assumption (all admissible weight distributions are supposed

to be equally likely to occur) could tend to exaggerate the probability of having a dummy. We

have proved however that, for a very small number of players, the introduction of some degree

of homogeneity in the distribution of the weights has a weak impact on this probability.

Finally, it is worth to emphasize that our results are limited to majority games, in which the

quota for a proposition to be approved is equal to 50% of the total weight. It should be of

interest to consider the impact of the quota value on the probability of having a dummy player.

We plan to study this question in another paper.

9It is difficult to obtain a precise estimate when parameter k is close to its minimum value because the
number of associated distributions is too small. It is the reason why we only consider in this Table some values
of k higher or equal to 20%.
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Table 5

Exact probability P (m,∞, k) of having a dummy player

as a function of k for large n and m = 4, 5, 6.

k 4-player WMG 5-player WMG 6-player WMG

17% - - 0.4167

19% - - 0.4167

21% - 0 0.4157

23% - 0 0.3811

25% 0.7500 0 0.2821

27% 0.7500 0.0601 0.2694

29% 0.7500 0.1737 0.3106

31% 0.7500 0.2699 0.3539

33% 0.7500 0.3444 0.3908

35% 0.7480 0.4033 0.4184

37% 0.7374 0.4519 0.4393

39% 0.7185 0.4924 0.4552

41% 0.6930 0.5251 0.4687

43% 0.6615 0.5494 0.4821

45% 0.6241 0.5631 0.4953

47% 0.5802 0.5634 0.5053

49% 0.5288 0.5466 0.5047

50% 0.5000 0.5303 0.4968
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Table 6

Simulated10 probability limit P (m,∞, k) of having a dummy player

as a function of k for large n and m = 6, 7, 8, 9, 10.

k 6-player WMG 7-player WMG 8-player WMG 9-player WMG 10-player WMG

20% 0.4187 0.0973 0.1199 0.1035 0.0802

21% 0.4172 0.1360 0.1419 0.1183 0.0902

23% 0.3790 0.2002 0.1750 0.1398 0.1042

25% 0.2825 0.2350 0.1990 0.1556 0.1127

27% 0.2692 0.2591 0.2200 0.1719 0.1233

29% 0.3106 0.2898 0.2421 0.1865 0.1308

31% 0.3530 0.3189 0.2605 0.1981 0.1378

33% 0.3910 0.3435 0.2766 0.2100 0.1433

35% 0.4175 0.3592 0.2890 0.2183 0.1486

37% 0.4378 0.3749 0.3005 0.2248 0.1528

39% 0.4533 0.3885 0.3082 0.2308 0.1560

41% 0.4650 0.3986 0.3158 0.2365 0.1600

43% 0.4797 0.4088 0.3220 0.2409 0.1625

45% 0.4929 0.4162 0.3267 0.2454 0.1655

47% 0.5035 0.4250 0.3326 0.2495 0.1690

49% 0.5033 0.4309 0.3378 0.2535 0.1728

50%∗∗ 0.4955 0.4353 0.3447 0.2575 0.1775
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8 Appendix: Proof of Proposition 2

(i) In order to characterize the distributions of the ni’s for which J5 is a dummy player, we

consider the set of coalitions to which J5 is susceptible to belong: {J5}, {J1, J5}, {J2, J5},
{J3, J5}, {J4, J5}, {J1, J2, J5}, {J1, J3, J5}, {J1, J4, J5}, {J2, J3, J5}, {J2, J4, J5}, {J3, J4, J5},
{J1, J2, J3, J5}, {J1, J2, J4, J5}, {J1, J3, J4, J5}, {J2, J3, J4, J5} and {J1, J2, J3, J4, J5}.
Given that n1 ≥ n2 ≥ n3 ≥ n4 ≥ n5 ≥ 1, by assumption (2), it can be checked that

{J5}, {J2, J5}, {J3, J5} and {J4, J5} are loosing, whereas {J1, J2, J3, J5}, {J1, J2, J4, J5},
{J1, J3, J4, J5}, and {J1, J2, J3, J4, J5} are winning and remain winning when J5 is removed.

Consequently, we have just to examine the coalitions which are left. Consider first the two-

player coalition {J1, J5}; J5 is a dummy player if and only if this coalition is loosing (if not, a

zero power for J5 would imply that a coalition with only one player is winning, contradicting

our assumptions) and this two-player coalition will be loosing if and only if n1 + n5 < Q. Con-

sider now the coalitions {J1, J2, J5} and {J1, J3, J5}; these coalitions are necessarily winning.

J5 is a dummy if and only if we have n1 + n3 ≥ Q (which implies n1 + n2 ≥ Q). The next

three-player coalitions {J1, J4, J5}, {J2, J3, J5}, {J2, J4, J5} and {J3, J4, J5} can be a priori

winning or loosing. Observe however that, as we have just seen that n1 +n3 ≥ Q, the coalitions

{J2, J4, J5} and {J3, J4, J5} are necessarily loosing and we have only to consider the two

first coalitions. In these coalitions, J5 is a dummy if and only if either the coalition is loosing

either it remains winning when J5 is removed, which is equivalent to: (n1 + n4 + n5 < Q or

n1 + n4 ≥ Q) and (n2 + n3 + n5 < Q or n2 + n3 ≥ Q). Finally, consider the coalition with four

players {J2, J3, J4, J5}. J5 is a dummy player in this coalition11 if and only if n2+n3+n4 ≥ Q.

To summing up, J5 is a dummy player if and only if we have:

n1 + n5 < Q and n1 + n3 ≥ Q and (n1 + n4 + n5 < Q or n1 + n4 ≥ Q) and (n2 + n3 + n5 < Q

or n2 + n3 ≥ Q) and n2 + n3 + n4 ≥ Q.

Recalling that
∑

i ni = n and eliminating redundant inequalities, we obtain:

n2 + n3 + n4 ≥ Q and n1 + n3 ≥ Q and (n2 + n3 ≥ Q or n1 + n4 ≥ Q),

which can be reduced to:

(n2 + n3 + n4 ≥ Q and n2 + n3 ≥ Q) or (n2 + n3 + n4 ≥ Q and n1 + n4 ≥ Q).

As n2 + n3 ≥ Q implies n2 + n3 + n4 ≥ Q, we finally obtain:

11Notice that this coalition could be loosing when n is even, by taking n1 = n/2. However this event cannot
occur as we have n1 + n5 < Q.
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n2 + n3 ≥ Q or (n2 + n3 + n4 ≥ Q and n1 + n4 ≥ Q),

in accordance with Proposition 2 (i). Furthermore, it follows from Proposition 1 that J4 and

J5 are both dummy players if and only if n2 + n3 ≥ Q.

(ii) J6 belongs to 32 coalitions: {J6}, {J1, J6}, {J2, J6}, {J3, J6}, {J4, J6}, {J5, J6},
{J1, J2, J6}, {J1, J3, J6}, {J1, J4, J6}, {J1, J5, J6}, {J2, J3, J6}, {J2, J4, J6}, {J2, J5, J6},
{J3, J4, J6}, {J3, J5, J6}, {J4, J5, J6}, {J1, J2, J3, J6}, {J1, J2, J4, J6}, {J1, J2, J5, J6},
{J1, J3, J4, J6}, {J1, J3, J5, J6}, {J1, J4, J5, J6}, {J2, J3, J4, J6}, {J2, J3, J5, J6}, {J2, J4, J5, J6},
{J3, J4, J5, J6}, {J1, J2, J3, J4, J6}, {J1, J2, J3, J5, J6}, {J1, J2, J4, J5, J6}, {J1, J3, J4, J5, J6},
{J2, J3, J4, J5, J6} and {J1, J2, J3, J4, J5, J6}. Assumption (2) in our model implies that

{J6}, {J2, J6}, {J3, J6}, {J4, J6}, {J5, J6}, {J2, J4, J6}, {J2, J5, J6}, {J3, J4, J6}, {J3, J5, J6}
and {J4, J5, J6} are loosing whereas {J1, J2, J3, J6}, {J1, J2, J4, J6}, {J1, J2, J5, J6}, {J1, J3, J4, J6},
{J1, J3, J5, J6}, {J1, J2, J3, J4, J6}, {J1, J2, J3, J5, J6}, {J1, J2, J4, J5, J6}, {J1, J3, J4, J5, J6},
and {J1, J2, J3, J4, J5, J6} are winning and remain winning when J6 is removed. We have to

studied the other 12 coalitions (among which {J1, J2, J6} and {J1, J3, J6} are winning).

Proceeding as above, it is easily checked that J6 is a dummy player if and only if

a) n1 + n6 < Q and

b) n1 + n2 ≥ Q and n1 + n3 ≥ Q and (n1 + n4 + n6 < Q or n1 + n4 ≥ Q) and (n1 + n5 + n6 < Q

or n1 + n5 ≥ Q) and (n2 + n3 + n6 < Q or n2 + n3 ≥ Q) and

c) (n1 +n4 +n5 +n6 < Q or n1 +n4 +n5 ≥ Q) and (n2 +n3 +n4 +n6 < Q or n2 +n3 +n4 ≥ Q)

and (n2 +n3 +n5 +n6 < Q or n2 +n3 +n5 ≥ Q) and (n2 +n4 +n5 +n6 < Q or n2 +n4 +n5 ≥ Q)

and (n3 + n4 + n5 + n6 < Q or n3 + n4 + n5 ≥ Q) and

d) n2 + n3 + n4 + n5 ≥ Q.

A tedious process of reduction of this set of inequalities leads to the six cases given in Proposition

2 (ii): (n2 + n3 + n4 + n5 ≥ Q and n1 + n5 ≥ Q) or (n2 + n3 + n4 ≥ Q and n1 + n4 ≥ Q) or

(n2 +n3 +n5 ≥ Q and n1 +n4 +n5 ≥ Q and n1 +n3 ≥ Q) or n2 +n3 ≥ Q or (n2 +n4 +n5 ≥ Q

and n1 + n2 ≥ Q) or n3 + n4 + n5 ≥ Q.

To complete the proof, it remains to observe that, in case 4, J4, J5 and J6 are dummy players

(by Proposition 1); and if J6 is a dummy and J4 is not (n2+n3 < Q), then it results from part (i)

of Proposition 2 that J5 is also a dummy player if and only if n1+n4 ≥ Q and n2+n3+n4 ≥ Q.2
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