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Abstract

Scoring Elimination Rules (SER), that give pointsceindidates according to their rank in
voters' preference orders and eliminate the cate(slawith the lowest number of points,
constitute an important class of voting rules. Ttless of rules, that includes some famous
voting methods such as Plurality Runoff or CoomhgeRsuffers from a severe pathology
known asmonotonicity paradoor monotonicity failure that is, getting more points from
voters can make a candidate a loser and gettingrfpaints can make a candidate a winner.
In this paper, we study three-candidate electiort ae identify, under various conditions,
which SER minimizes the probability that a monotityi paradox occurs. We also analyze
some strategic aspects of these monotonicity fsluThe probability model on which our
results are based is thmpartial Anonymous Cultureondition, often used in this kind of
study.

1. Introduction

In voting theory, a monotonicity paradox occurs lediene a voting system reacts in a
perverse way to a change in individual preferentes forms of monotonicity paradox are
usually distinguished and studied in the literatiBeams and Fishburn, 1983; Lepelley et al.
1996; Miller, 2012; Felsenthal and Tideman, 2084})0rding to Brams and Fishburn:

MORE-IS-LESS PARADOX (otJpward Monotonicity Failurgoccurs when, if the winner
were ranked higher by some voters, all else unawntpen another candidate might have
won.

LESS-IS-MORE PARADOX (oDownward Monotonicity Failureoccurs when, if a loser
were ranked lower by some voters, all else unch@rgen this loser might have won.

The following example, borrowed from Felsenthal dimdeman (2014), illustrates these two
forms of monotonicity failurésunder the widely used Plurality Runoff system. Enthis
method, each voter casts one vote for a singleidaredand a candidate wins if she obtains an
absolute majority of the votes. If no candidatedéslared the winner in the first round, a

! See also Miller (2012) for a (more or less) reaHd@xample.



second round is organized which confronts the tadaates with the highest number of
votes in the first round and the one who obtaiesntiajority of votes wins.

Suppose there are 127 voters whose rankings ofhtiee candidatess, b andc, are as
follows:

Number of voters Ranking
32 Ri:a>b>c
9 Ry,a>c>b
9 Ry:b>a>c
38 Ryb>c>a
30 Rs:c>a>b
9 Rg:c>b>a

Under Plurality Runoff, candidateis eliminated in the first rounda(obtains 41 voted) 47
votes andc 39 votes) and candidate beats candidate in the second round (71 to 56):
candidaten is thus the election winner.

Suppose now that nine out of the 38 voters whosrlimanking isb > ¢ > a change their
ranking toa > b > c (thereby increasing’s support). As a result of this changdrather than

c) is eliminated in the first round amdbeatsa in the second round (68 to 59), illustrating the
More-is-Less-Paradox.

Suppose instead that three of the 38 voters whusal iranking isb > ¢ > a change their
ranking toc > a > b (thereby decreasings support). As a result of this changdrather than

c) is eliminated in the first round arbeatsc in the second round (76 to 51), illustrating the
Less-is-More-Paradox.

Plurality Runoff (or Plurality Elimination Rule —-HR in what follows) is an example Biun-

off Point Systemsr Scoring Elimination Rulesin a remarkable paper, Smith (1973) has
shown that the whole class of Scoring Eliminatiand? is subject to monotonicity failure. As
we only consider in this paper the three-candidase, we can describe this class of voting
systems as follows: in the first round of the cleoprocess, each voter ranks the candidates
and the score of each candidate is computed obasis of a point-systeifi, 4, 0) that gives

1 point each time a candidate is ranked first itevs preferences, points for a second
position, with0 < A < 1, and 0 point for a third and last position. Thedidate with the
lowest score is then eliminated and, in a secommhdpthe two remaining candidates are
confronted and the one who obtains the majorityaiés wins. Plurality Runoff is obtained
whenA = 0 and, in the three-candidate case, is equivalethiet@o-called Alternative Vote or
Instant Runoff Voting. Takingl =1 gives the Coombs method (or Negative Plurality
Elimination Rule - NPER): the candidate who is @fiated in the first round is the one who is
ranked last by the largest number of voters. Adtiell known Scoring Elimination Method
is the Borda Elimination Rule (BER), associatedtiie case wherd = 1/2; this rule is
known to be the only one in the class of Scoringnilation Rules that always selects the
Condorcet winner — i.e. the candidate who beatk e#lter candidate in majority pairwise



comparisons — when such a candidate exists (set,SIi73). Although Scoring Elimination
Rules are not the only voting procedures that éxhilonotonicity paradd we focus in the
current study on this particular class which cordaa procedure very often used in practice
(namely, PER).

As some authors regard a voting method that isepuibde to give rise to monotonicity failure
as totally unacceptable (e.g. Doron and Kronick/7)9it is of interest to investigate the
following issues: First, can we consider that monatity violations are too rare to be of
practical concern? Second, how alternative votipstesns compare with respect to their
propensity to give rise to such violations? Andafiy, what is the voting rule that minimizes
the probability of monotonicity failure in the ckaef Scoring Elimination Rules (SER)?

The first attempt to consider some of these questis Lepelley et al. (1996). Using the
Impartial Anonymous Culture (IAC) assumption, whishates that all possible voting
situations are equally likely to be observed, theynpute the probabilities of both More-is-
Less and Less-is-More paradoxes for PER (or PtyrRlunoff) and for NPER (or Coombs
rule) in three-candidate elections. They concluldat tit seems difficult to claim that
monotonicity paradoxes are extremely rare and mav@ractical relevance”. Miller (2012)
implements some simulations based on the ImpaCtidture (IC) assumpticrand on various
special conditions (such as single-peakedness3valuating the likelihood of monotonicity
failure in PER elections with three candidates. blisic and important finding is that, under
PER, monotonicity problems are substantial whenelertions are closely contested by all
three alternatives. The results obtained by Plassraad Tideman (2014) are somewhat more
comforting: using a statistical model that simutatanking profiles that follow the same
distribution as ranking profiles in actual elecgprthey estimate (among other things) the
frequency of More-is-Less paradox for PER and NRiEkree-candidate elections; it turns
out that these frequencies are between 1% and @brding to the number of voters.

In this paper, we offer some new and exact resultthe likelihood of monotonicity failures
for the whole class of SER, completing and extegavhat has been done before.

Our study is organized as follows. In Section 2,dgeve some analytical representations for
the probability of Monotonicity Paradox(es) undecie of the three most famous SER: PER
(A = 0), BER L = 1/2) and NPERX = 1). These representations depend on the nuniber o
voters and make use of the IAC assumption, whighulsttes that every possible "voting
situation" is equally likely to occur. The repretgions for PER and NPER are based on
characterizations of voting situations giving rteemonotonicity failure that can be found in
previous works (Lepelley et al., 1996; Miller, 201Zhe analysis of BER is completely new.
Using the same probabilistic assumption as in 8e@j Section 3 studies the case where the
number of voters tends to infinity; we obtain somepresentations giving the desired

? See on this point Fishburn (1982). An example dingprule which does not belong to SER and failsatisfy
monotonicity is the procedure associated with thiee of Dodgson (Lewis Carroll); see Felsenthal Bidéman
(2013), (2014).

* The IC assumption considers that each voter chandependently and with the same probability (1/6) one of
the six possible rankings on the three candid@gscontrast, the IAC assumption introduces someaiegf
dependence in voters' preferences (see Gehrled, 20r more on these two assumptions).



probabilities as a function of paramekeand allowing the determination of the optimal \ealu
of .. We consider in Section 4 what happens when meées are assumed to be single-
peaked. We continue in Sections 5 by consideringnesdalistinctions in the types of
circumstances in which failures of monotonicity caccur; these distinctions have been
introduced and analyzed in a recent paper by Rélaseand Tideman (2013). Section 6 is
devoted to the impact of election closeness onlikedihood of monotonicity failure and
Section 7 summarizes our results.

2. Representations for Monotonicity Paradoxes under three Scoring
Elimination Rules

We consider elections with a setrolvoters (or individuals) and a set of three caneisidor
alternatives),A = {a, b, c}. We assume that each voter has preference ovealtémmatives
given by one of the six possible strict rankifys(1 < j < 6) defined in the introductory
example. We suppose that voters’ preferences areradated anonymously into groups with
common preference rankings, thus we consideting situations(or simply situationg
represented by six-tuples of the fonmn= (ny,n,, n3, n4,mn5,n6) such thaty; =20 (1<j <

6), 216'=1 n; = n, and wheren; (1 < j < 6) denotes the number of voters with preference
rankingR;. Let D(n) be the set of voting situations withvoters and leD be the set of all
voting situations (with any number of voters). Atimg rule (or a voting system) is a mapping
F from D to X. In this paper, we are interested only in thesclafsvoting rules introduced in
the previous section, i.e. the class of ScoringhElation Rules for three-candidate elections.
For a real numbet € [0, 1], we denote by; the SER using the point-systém 4, 0). For a
candidatew € A and a voting situatiom € D, we denote by, (w, x) the score obtained by
w in the first round, when voters’ preferences described byx and the point-system
(1,2,0) is applied.

Considerx andy in D(n) andw in A. We say thay is an improvemenbf the status ofv
from x if w is ranked higher iry by some voters, all else unchanged. We sayijthata
deteriorationof the status ofv from x if w is ranked lower iny by some voters, all else
unchanged. Vulnerability to More-is-Less ParadoX.RYland Less-is-More Paradox (LMP)
can now be formulated as follows. A voting systéims vulnerable to (or exhibits) MLP for
situationx if there exists an improvemeptof the status of' (x) from x such thatF(y) #
F(x). Similarly, F is vulnerable to (or exhibits) LMP at situatienf there exists a candidate
w, w # F(x), and a deterioratiop of the status ofv from x such thaf (y) = w.

For a given monotonicity paradox M (MLP or LMP) aadvoting systen¥, we define the
vulnerabilityof F to M as the probabilityPr(M, F,n), that a situation i (n) gives rise to
M under F. Under the Impartial Anonymous Culture assumptién(M,F,n) is the
proportion of voting situations in  which F is wvulnerable to M:
Pr(M,F,n) = |D(M,F,n) |/|D(n)|, whereD(M, F,n) is the set of situations if(n) for
which F is vulnerable to M. Note that the Se{MLP, F,n) is the disjoint union of the six



subsetsD(MLP,F,n) pqwwy W,w' € A,w # w’) where D(MLP,F,n) 5,y Consists of all
situations x satisfying the two following conditionsF(x) =w and there exists an
improvementy of the status ofv from x such that (y) = w'. Similarly, D(LMP, F,n) is the
disjoint union of the six subsetD(LMP,F,n)\w,wn (w,w € A,w#w') where
D(LMP, F,n)\w,wn consists of all situations satisfying the two conditions(x) = w and
there exists a deterioratignof the status ofv’ from x such tha¥ (y) = w'.

We also introduce a global measure for the vulnkalmf F to monotonicity paradoxes,
denoted byPr(GMP, F,n) and defined as the probability that a situatioregirise to MLP or
LMP underF. If we denote byPr(MLP + LMP, F,n) the probability that a situation exhibits
both MLP and LMP, then:

Pr(GMP,F,n) = Pr(MLP,F,n) + Pr(LMP,F,n) — Pr(MLP + LMP,F,n) (2.1)
It is also easy to see that, by symmetry argumer@sybtain:
Pr(MLP,F,n) = 6 [D(MLP,F,n) ,q) |/ID(M)| (2.2)
Pr(LMP,F,n) = 6 [D(LMP,F,n)\@ap) |/ID(M)| (2.3)
Finally, we can writePr(MLP + LMP, F,n) in the same way:

Pr(MLP + LMP,F,n) = 6 |D(MLP,F,n) »(u.cy N D(LMP,F,n)\@p|/ID(M)| (2.4)

Lepelley et al. (1996) provided analytical expreasiforPr(MLP,F,n) andPr(LMP, F,n)
for F = F, (PER) andF = F; (NPER). The starting point of our study is to cdenpent their
results by extending these representations todeet= F, (BER) and by computing the
global vulnerability to monotonicity paradoxes &ach of the three classical SER's.

The first step in such calculations is to charaztethe situations belonging respectively to
D(MLP,F,n) e and D(LMP,F,n)\, for eachM and F under consideration. The
characterizations of these sets FgrandF; are given in Lepelley et al. (1996). The following
proposition provides characterizations of the situes belonging taD (MLP, F,5,n) and to
D(LMP, F,s,n). Note that, as in Lepelley et al. (1996), in orttesimplify our calculations,
we ignore the problem of tied elections: we assuha one and only one alternative is
eliminated in the first stage as well as in theoselc(this assumption alters the results only for
small values oft).

* Miller (2012) refers to this kind of situation asduble monotonicity failure”. In a recent paperisEathal and
Tideman (2014) have shown that "all prominent \@tmethods that are vulnerable to monotonicity failoan
also display double monotonicity failure".



Proposition 2.1. Let x = (nq, ny, n3, Ny, ns, ng) be a voting situation.
1) The situationx belongs ta (MLP, Fy 5, 1) »(q,c) if and only if:
(—an —Ny, —N3+Nyg +n5+2n,<0
-y + Ny —2n3+ny+2n5+ng <0
4 Ny =Ny +N3+n,—n5+ng <0
| ny+n,+n3—n,—ng—ng <0
k ng—Ny+nz+n,—ng—ng <0
2) The situationx belongs toD(LMP, F 5,1 )\(a,p) if @and only if:
—2n; —ny; —nzg+ny+ngs+2n, <0
Ny =Ny +N3+n,—n5+ng <0
ng+n, +nzg—ny,—ng <0
L n+n,+n3—ng—ng—ng <0
3(ny+n, —ng)+nyg—ny,+ns <0

Proof. See appendix.

The second step of calculation is now to countetkect number of integer solutions for each
of the two systems given by the previous propasitidote that all (in)equalities in these
systems are linear and have integer coefficientshervariablesy; (1 < j < 6) and on the
parameten. We know from Lepelley et al. (2008) and Wilsor &'ritchard (2008) that there
is a well-established mathematical theory and iefficalgorithms to calculate the number of
integer solutions of such systems. Indeed, by Etishtheorem (Ehrhart, 1962), this number
is a quasi-polynomial inn, i.e. a polynomial expressioif(n) of the form f(n) =
»q_.c, (n)n¥, whered is the degree of (n) and where the coefficients (n) are rational
periodic numbers im. A rational periodic number of periagon the integer variable is a
functionu: Z - Q such that(n) = u(n’) whenevem = n' (modq). Each coefficient, (n)
can have its own period, but we can always wf(te) in a form where the coefficients have a
common period called the period of the quasi-payiad f(n) and defined as the least
common multiple of the periods of all coefficienfo calculate the quasi-polynomials
associated with the systems of Proposition 2.1usesthe program proposed by Verdoolaege
et al. (2005). This program is based on Barvina@iforithm (1994), which is known to be
one of the most powerful tool that guarantees tignmmial-time counting of integer points
inside rational polytopes (for fixed dimension).

Result 2.2. (BER) Forn =1 [12] (i.e.n= 13, 25, 37...), we have:

_ (n-1)(53n*+188n3-1482n2+9388n—139475)
Pr(MLP, Fy5,n) = 1728(n+1)(n+2)(n+3)(n+4)(n+5)
_ (n-1)(n-7)(3n2-6n-109)
Pr(LMP, Fy5,n) = 144(n+1)(n+2)(n+3)(n+4) '

) = (n—-1)(n-13)(13n%-163n2-1801n+8575
n= 1728(n+1)(n+2)(n+3)(n+4)(n+5)

___ (n-1)(19n3-n2-1051n+889)
Pr(GMP, Fy5,m) == 432(n+1)(n+2)(n+3)(n+4)

Pr(MLP + LMP, Fy,




The proof of this result is immediate. Using Bapkis algorithm, we calculated the quasi
polynomials describing the numbelsD(MLP,F,n) ¢ | €t | D(LMP,F,n)\(ap | as
functions ofn. The numbelD(n)| is known and given byD(n)| = (n Z 5) forn>1; it

then suffices to apply formulas (2.2) and (2.3)dioain the analytical expressions for
Pr(MLP,F,n) et Pr(LMP,F,n). To calculate Pr(GMP,F,s,n), we first calculated
Pr(MLP + LMP,F,n) and then we applied formula (2.1). The calculatanPr(MLP +
LMP,F,n) is done in three steps: (i) characterization oé #ituations belonging to
D(MLP,F,n) papy N D(LMP,F,n)\(q,c that are simply the situations that jointly satitife
two systems of Proposition 2.1, (ii) use of Barkisoalgorithm to obtain the quasi-
polynomial giving the expression dfD(MLP,F,n) e N D(LMP,F,n)\p| and (i)
application of formula (2.4).

Note that the obtained quasi-polynomials are ofreled and period 12. For simplicity, we
have only exhibited here the expression of thesssiguolynomials for integers that are
congruent to 1 modulo 12. However, complete formiiket the probabilities calculated in this
proposition for any congruence modulo 12 are akkland can be provided on request from
the authors. The same remark is true for the twimviing propositions where we offer
similar results for PER and NPER (recall that tesutts obtained by Lepelley et al. (1996)
deal only with the vulnerability to MLP and LMP apndly for integers: multiple of 12, i.e.
for a congruence 0 modulo 12).

Result 2.3 (PER) Forn =1 [12] (i.e.n=13, 25, 37...), we have:

_ (n-1)(n-13)(52n%+713n2+2566n+2525)
Pr(MLP,Fo,n) = 1152(n+1)(n+2)(n+3)(n+4)(n+5) '
_ (n-1)(n+11)(17n%-45n2+147n+745)
Pr(LMP, Fo,n) = 864(n+1)(n+2)(n+3)(n+4)(n+5)
_ (n-1)(n+11)(n—-13)(17n%+56n-25
Pr(MLP + LMP,PER,n) = 2304(n+1)(n+2)(n+3)(n+4)(n+5) '
) = (n—1)(397n*+1292n3-35298n%-142228n—142115)
n= 6912(n+1)(n+2)(n+3)(n+4)(n+5)

Pr(GMP, F,,

Result 2.4 (NPER) Forn =1 [12] (i.e.n =13, 25, 37...), we have:

_ (n—-1)(4n®-11n2+24n+439)
Pr(MLP, Fy,n) = 72(n+1)(n+2)(n+3)(n+4)
_ (n-1)(7n3+27n2-3n—-463)
T 108(n+1)(n+2)(n+3)(n+4) ’

Pr(LMP, F;,n)

_ 5(n-1)(n-13)(2n3-15n%-228n-623)
Pr(MLP + LMP,F;,n) = 2592(n+1)(n+2)(n+3)(n+4)(n+5)
(n-1)(302n*+2017n3+2217n?-3053n—17035)

Pr(GMP,NPER,n) = 2592(n+1)(n+2)(n+3) (n+4) (1+5)

The following Tables display some valuesPei M, F;,n) for M € {MLP, LMP, MLP +
LMP,GMP}, A € {0,%, 1} andn = 13 (Table 1)n = 109 (Table 2)n = (Table 3).



MLP LMP MLP+LMP GMP
Fo 0 5/476 = 1.059 0 5/476 =1.05%
Fs [4/357 =1.12% 1/357 = 0.28% 0 5/ 357=1.40%
Fip | 8/357 =2.24% 9/238 = 3.78% 0 43/714=6.02%

Table 1: Vulnerability for PER (5), NPER (F) and BER (), n=13

MLP LMP MLP+LMP GMP
F, | 475593/12233606 = 3.80% 63981/3495316 = 1.93% 780283606 = .64%  16143/317756 =5.089
= 411/15029 = 2.73% 5550/321937 = 1.73%  30648/6116868% | 12750/312937 = 3.96%
= 15789/321937 = 4.90% 3555/58534 = 6.07%  16572/6036827% | 187119/1747658=10.71%6

Table 2: Vulnerability for PER (g), NPER (k) and BER (F), n=109

MLP LMP MLP+LMP GMP

Fo 13/288 =4.51% | 17/864 =1.97947/2304 = .74% 397/6912 =5.74%

Fs 53/1728 = 3.07% 3/144 = 2.08% | 13/1728 = .75%4.9/432 = 4.40%

F1 1/18 = 5.56% 7/108 =6.48% 5/1296 = .39% 151/129658%
Table 3: Vulnerability for PER (5), NPER (F) and BER (), n=c

The computed values show that, for the three ruteter consideration, the vulnerability to
monotonicity paradoxes increases with the numbepotdrs and, with the exception of double
monotonicity paradox, this vulnerability reachesluea that cannot be considered as
negligible. Coombs rule (Jrclearly exhibits the poorest performance for ateach type of
monotonicity failuré and each value af. with a GMP probability close to 12%. wherends

to infinity. BER dominates PER for MLP and GMP Iblese two rules perform similarly for
LMP and MLP+LMP.

3. Limiting Representations for all Scoring Elimination Rules

We suppose in this section that the nunmief voters tends to infinity and we derive some
general representations for the vulnerability oR&H0 monotonicity paradoxes as functions
of 1. These representations will allow us to identfty, each form of the paradox, the SER
that minimizes the probability monotonicity failuréll the representations in this section
(and in the remaining of the paper) are based @Al assumption.

In the following, a voting situation,, n,, ns, n4, ns,ng) in D(n) will be represented by the
6-tuplex = (x4, x2, X3, X4, X5, X¢) Wherex; = n;/n denotes the proportion of individuals with
preferenceR;. We assume that the number of individualss sufficiently large (tends to
infinity) and we consider as a voting situation @tuplex = (xy, x5, x3, X4, X5, X¢) Of non-
negative real numbers that sum to 1. We denotg ity set of all such voting situations. We

> A noticeable exception if double monotonicity parmadfor which the vulnerability of NPER if lowerah the
vulnerability of both PER and BER.



keep the same definitions and the same notatioimsthe previous section, but we adapt them
to this new context wher®(n) and D are replaced bys. Voting rules are defined as
mappingsF from S to X; scoresS;(w,x) and SERSsF, are defined in a similar way as
previously. The notions of improvement, deteriaatand vulnerability to MLP and LMP are
also unchanged. We will just slightly modify sometations and replac®r(M,F,n),
D(M,F,n) (where M is MLP, LMP, GMP or MLP+LMP),D(MLP,F,n)uww
D(LMP,F,n)\wwy respectively with Pr(M,F,o), S(M,F), S(MLP,F),yw, and
S(LMP, F)\ w1

3.1. Characterization of MLP situationsfor F;

Given a SERF,, we seek a characterization of the voting situetifor whichF, is vulnerable
to MLP. Let us consider a situation= (x;, x,, ..., X¢) in S(MLP, F}) »(4,¢)- By definition of
S(MLP, F}) s(a,c) We know that; (x) = a, thus:

Sy (a,x) > S,(c,x), S)(b,x) > S)(c,x) and aMAJb in x, (3.1)

whereaMAJb means that a majority of voters pregeto b. We also know that there is an
improvementy of the status o& from x, such thaF (y) = c. Thus:
Sx(a,y) > S5(b,y), Salc,y) > Sy(b,y)and cMAjainy (3.2)

Let m; , stand for the proportion of individuals with prefaceR; who move up candidate
over k candidatesi = 1,2). Since changes from to y must improve the status afwhile
being as much as possible at the expenge(bfmust be eliminated in the first round) and as
little as possible at the expensecofc must go to the second round and win againsive
can writey as follows:

Y = (x1 +x3+mMy5,x3,0,x4 — My, x5 + X6,0)

In fact, the progress af, the elimination ob in the first round and the victory ofagainsia
are only possible under the following conditions:

1. All voters with ranking R, or R, keep their preferences (no improvement is possible
for a). This means thatn;; = m;, = 0for j =1or2

2. All voters of type R; = bac change their preferences By = abc. Thusm;; =
x3 andm;, = 0.

3. For each voter of typR, = bca, there is two possibilities: move #®, = abc or
maintainR,. Note that ifc can be elected by a passage fr@nto R;, he (she) will be also
elected by moving fron®, to R,. We can therefore take,; = 0 and carefully choose, ,
(with 0 < my ,<x,).

4. All voters with rankingRs = cab keep their preferences. Thag ; = ms, = 0.



5. All voters of type Rg = cbha change their preferences Ry = cab. Thusmg; = x4
andmg ,=0.

Before continuing, we emphasize that any improvemanfavor of a from x is not
necessarily of the above form. However, it is néfiadlt to see thatF;, exhibits MLP atx if
and only if there is an improvement of the abovenfavherebyc is elected. The remaining
work is therefore to determine a necessary andcgarif condition onn, , for the election of
¢ when voters’ preferences are describeg by

It is immediate thaf; (y) = c if and only if

A=Dx;—x+(A—=Dxz+ x4 —Axs — Axg + (A —2)my, <0 (3.3)

Axl - ){xz + ){xg + (1 - l)x4 - x5 - x6 + (2/1 - 1)m4,2 < O (34)
X1+ Xy + X3 — X4 — X5 —Xg +2my, <0 (3.5)
0<my,<x4 (3.6)

Thus we only need to rule out, ,. To do this, we first collect all bounds at, , from (3.3)-
(3.6). Thereatfter, the required characterizationbtined by making sure that those bounds
(of m, ;) are such that each lower bound is less than @gér bound. In fact, given two real

numbers ands, there exists a real numbesuch that > randt < s if and only ifr < t.

Due to (3.4), we achieve this by distinguishingethcased) < 1 <% ,A=1 and §< A<

2
1.
After eliminating redundant constraints, we obtidie following:

Proposition 3.1 A voting situationx belongs taS(MLP, F}) »(4,¢ if and only if the following
conditions are satisfied:
Forl e [0%]
—x;+ (A =Dy, —Axg + A, + (1 —Dxg + x4 <0
—Axy +Ax, —x3+ A =Dy + x5+ (1 —Dxg <0
—X1— Xy + X3+ X4 — X5+ x5 <0
X1+ X +X3— X4 —X5—%x6 <0
X1+ (A —4)x, + x5+ x4, + (21 —3)x5 + (24— 3)x <0
For 1 € E 1] :
—xX;+ (A =Dy, —Axg + A, + (1 —Dxg + x4 <0
—Axy +Ax, —x3+ A =Dy + x5+ (1 —Dxg <0
—X1— Xy +xX3+Xx4 —X5+%x5 <0
X1+ Xy +X3— X4 —X5—%x6 <0
AXy = Axy + Ax3 + (1 = D)xy — x5 — %6 < 0



3.2. Vulnerability to ML P paradox

Recall thatS is the unit simplex formed by the set of all vgtisituations and that
S(MLP, F}) »(a,c) is the polytope formed by all voting situationgisfging the conditions of
Proposition 3.1. We know that is of dimension 5, since the components of eadingo
situation inS sum to 1. Denote byol(E) the 5-volume of a subsét of S. Similarly to
formula 2.2, the probability tha@, is vulnerable to MLP is given by:
6vol(S(MLP, F))\(ac))

vol(S)
Thus, the computation ofol(S(MLP, F;) »qa,) Provides the probability thak, exhibits
MLP under the IAC assumption. In this paper, afllumes are computed using a
triangulation method derived from the well known héa and Hickey algorithm of
triangulating a polytope (Cohen and Hickey, 19T@X P be a given-dimensional polytope
described by some non redundant linear inequalgiegy<b;; j = 1,2,...,m Each faceF; of
P corresponds to at most one equatign= bj with j = 1,2,...,m Each vertex can then be
attached to the subset of facets it belongs to.0€ihg a vertex, said;, a dissection of P is
obtained by considering all pyramids with apg»and base§; such that; is out ofF;. This
operation is then applied recursively to find aarngulation of P into simplices, each
containingd +1 points that are affine independent. Finally théuree of P is the sum of the
volumes of simplices obtained in its triangulatiosing the following formula of thel-
dimensional volume of a simpleéap ay,...,a) :

|det (a; — ag, a; — ag, ...ag — ay)|

d!
where eacly; is a vertex ofA(ay, a4, ..., ag) and the notatiodet stands for the determinant

andvoly is a constant that depends on the cartesian catedsystem used for vertices. Since
each probability in this paper is a ratio, one sanply setvoly = 1. For illustrations see
Gehrlein et al. (2014).

Pr(MLP,F, ,x) = = 72000l (S(MLP, F)) r(a,0))

vol(A(agy, aq, ...,aq)) = vol,

We obtain:

Result 3.2 For e [0,%] ,

1152415 — 8232214 + 34154413 — 140310412 + 364162111 — 192564110 — 12354571° + 295897518
17282 + (L + (1 — D32 — D*(2 — 3022 + 1 — 442)
—234776717—422931° + 20098622% — 12136722* — 103243 + 31096042 — 1372801 + 19968
* 17282 + (1 + (1 — D32 — D*(2 — 322 + 1 — 442) :

Pr(MLP,F;, ) =

1
Fore [E' 1] ,
640113 — 10976212 + 736911 — 27020421° + 6192251° — 94971718 + 100682217 — 74037716
43223(2 = 2)3(541 — 2)(422 =31+ 2)(242 — 41+ 3)
3639791° — 1026571* + 387213 + 847012 — 28641 + 312
43223(2 — 2)3(51 — 2)(41%2 — 31 + 2)(2A2 — 41+ 3)

Pr(MLP,F;,©) =




3.3. Characterization of LMP situationsfor F,

We now seek to characterize the voting situatieansvhich F, is vulnerable to LMP. Let us
consider a situation x = (x4, x5, ...,%s) IN  S(LMP,F))\@qp- By definition of
S(LMP, F))\@ap), candidate must have the lowest score withindeed, candidate cannot
have the lowest score withsinceF,;(x) = a, and candidaté cannot have the lowest score
with x since she (he) must win after a deterioratjoof her (his) status. Note also that
aMA]Jb in x (a andb reach the second round amdvins) andaMAJb in y (the deterioration
of the status ob does not change the outcome of the majority dddigrefore, the only
possibility, forb to be the winner withy, is the elimination of: in the first round and the
victory against in the second round. Thus, we must have:

S (a,x) > S, (c,x), S(b,x) > S,(c,x) and aMAJb in x

S, (b,y) > S, (a,y), S,(c,y) > S,(a,y) and bMAJciny

Let m;, stand for the proportion of individuals with prefaceR; who lower the ranking of

candidaten by k places k = 1,2). The deterioration of the statusigfthe elimination otz in
the first round and the victory éfagainsic are only possible under the following conditions:

1. All voters with rankingR; = abc keep their preferences or change their preferetacs =
acb. Hence we taker; , = 0 and carefully choose; ; (with 0 < my ;<x,).

2. All voters with ranking R, or R; keep their preferences (no deterioration is pésdir b).

This means thain;; = m;, = 0 pour j = 2 0u &

3. For each voter of typR; = bac, there is two possibilities: move Ry = acb or maintainR;.

Note that ifb can be elected by a passage fr@nto R;, he (she) will be also elected by keeping

R3;. We can therefore take; ; = 0 and carefully choosei; , (with 0 < m3 ,<x3).

4. For each voter of typR, = bca, there is two possibilities: move Ry = cba or maintainR,.

Note that ifb can be elected by a passage fr&nto R; = cab, he (she) will be also elected by

moving from toRs,. We can therefore takei,, = 0 and carefully choosen,; (with 0 <

My, 15X4).

5. All voters with rankingR, = cha keep their preferences. Thug ; = mg, = 0.

So we have a deterioratign(of the status ob) from x that takes the form:

y = (x1 — My, Xy + My q + M3, X3 — M33, X4 — My, Xs5,Xe + m4,1)

Thus the ruleF, exhibits LMP atx if and only if there is a deterioratign(of the status ob)
from x that takes the above form wherebys elected. The remaining work is therefore to
determine a necessary and sufficient conditiomen, m; , andm, ; for the election of allowing
the election ob when voters’ preferences are describeg by



It is immediate thaF, (y) = b if and only if
(A=Dx;+x,+ (1= Dx3 — x4 + Axs + Axg + Amy; + (2 —A)mz, + (1 —A)my; <0

x1+ (1= Dxy +Ax3 —Axy + (A — Dxs —x6 —Amy 1 + (1 —2)mz, + (A —1)my; <0
—X1 t Xz —X3— X4+ X5+ X+ 2m1‘1 + 2m3,2 + 2m4‘1 <0
0 < my =Xy, 0 < m3,<x3zand0 < m,,<x,

As in the previous section, ruling out step by stegach of the three
parametersn, ;, mz,, my, together with redundant constraints leads to thikoviing
proposition:

Proposition 3.3 A voting situationt belongs taS(LMP, Fj)\(a,») if and only if the following
conditions are satisfied:
1. For 2€ 03],
X+ A —Dxy —Axs +Ax, + (1 —ADxs + x4 <0
—X1— Xy +X3+X4 —X5+%x5 <0
=D +x)—(A=2D)(3+x5) — (L +D)(x,+x5) <O
=D +x—x4—x5) +Ax3 —(2—-3D)x5<0
A+ —x4,—%x)+F (A —=2D)Bxy —x5) —(1-3)x3 <0
2.For A e [%1] ,
X+ A —Dxy —Axs +Ax, + (1 —ADxs + x4 <0
—X1— Xy +xX3+Xx4 —X5+x5 <0
Q=D +x)— (A =2D)(x3+x5) — A1+ D) (xs +x) <0
2= +x, —x6) +Ax3 —3Ax, — (2—-3D)xs <0

3.4. Vulnerability to LM P paradox

Let S(LMP, F3)\(q,» b€ the polytope formed by all voting situationis§ging the conditions

of Propositions 2. The probability th&t is vulnerable to LMP is given by:

6vol(S(LMP, F,'l)\(a"b))
vol(S)

Thus, the computation afol(S(LMP, F;)«(,»)) Provides the probability thatF, exhibits

LMP.

Pr(LMP,F; ) = = 720v0l(S(LMP, F)x(a,p)

Result 3.4 For 1 € [o,%] ,

6417 4+12816-9215-1482%-65213+14111%2-91114204

Pr(LMP,F) , ) = 5184(2—-)(1-2A)*

For 1 € El] ,

2427 -1801%+45015-6581%+74813-36312+621+1
Pr(LMP,F, ,©) = .
( Fa, ) 1296(2—-1)A3




3.5. Global vulnerability

Now that the respective vulnerabilities to MLP drddP are known, it remains to assess the
global vulnerability to monotonicity paradoxes. Asgously to the formula 2.1, we have

Pr(GMP, F), ©) = Pr(MLP, F, ,») + Pr(LMP, F; ,©) — Pr(MLP + LMP, F; , )
So we just need to compuke(MLP + LMP, F, , ) which is simply given by the formula:
Pr(MLP + LMP, Fy, ® ) = 72000l(S(MLP, F) »,c) N S(LMP, F))\(a,p)

WhereS(MLP, F}) siq,c)y N S(LMP, Fj)\q,p iS the set of voting situations that jointly shtis
the conditions of propositions 3.1 and 3.2. Aftaicalating the volume of this set, we get:

Result 3.5 For € [o,%] ,

21924417 — 190404116 + 574470115 — 13773411 — 3612736113 + 10010609412 — 941415941 — 925375241° + 399059501°
5184(2 + D)(L+ A)(1 — D2 — D*(2 — 34)3(2 — 54+ 242 + 2/3)
—58786139/18 + 5054214317 —2545397615 + 442072425 + 35234561 — 310787243 + 116892842 — 2310401 + 19584
51842 + (1 + (1 = D*(2 — D)*(2 — 3A)3(2 — 54 + 242 + 223)

Pr(MLP 4+ LMP,F),e) =

1
Ford e [E' 1],
97678115 — 94318411 + 4303838113 — 12343296112 + 2495950211 — 3782011311 + 445033681°
2592A3(2 — 1)3(2 — 51)(2 — 31 + 442)(3 — 44 + 242) (1 — 21 + 312)2
+ —4152241528 + 3104050817 — 186301701° + 892049245 — 3352717A* + 95916913 — 19754412 + 262041 — 1680
2592A3(2 — 1)3(2 — 51)(2 — 31 + 442)(3 — 44 + 242)(1 — 21 + 312)2

Pr(MLP + LMP,Fy,0) =

We can therefore deduce the global vulnerabilitgntmotonicity paradoxes

Result 3.6 For 1 € [o%] ,

691241° — 36288118 + 9216117 — 340448116 + 3419456115 — 4955750114 — 19346650113
51842 + (1 + A)(1 — D*(2 — D)*(2 — 30)3(2 — 51 + 222 + 243)
, 660837992 — 391052460" — 117106696'° + 2329853351° — 1213023861° — 98661200” + 1758699282°
51842 + A)(1 + )(1 — D*(2 — D*(2 — 30)3(2 — 51 + 212 + 23)
—8996690415 — 31858724* + 2654790443 — 1385292842 + 32433921 — 304896
T 51812 T DA+ DA D32 — D' (2 3P G2Z —1—2)(2 54+ 22 1 275)

Pr(GMP,Fj,») =

1
Fore [5, 1] ,
432213 — 4680112 + 16644111 — 16364410 — 344242° + 10955948 — 13247227 + 9242115 — 3645215
259223(2 — 1)3(1 — 21 + 312)2
53921% + 219613 — 127912 + 2431 — 8
259223(2 — 1)3(1 — 24 + 322)?

Pr(GMP,Fj,») =




Observe that we recover the results of Lepelleple{(1996) for PERA = 0) and NPER
(A =1) as well as the results of the previous sectionBieR (1 = 1/2). Furthermore, our
results allow us, for each type of paradox, to iifethe less vulnerable SER:

1. For MLP, the minimum is at = 0.4451681 with a frequency 0f0.03040869

2. For LMP, the minimum is at = 0.3669500 with a frequency 010.01806508

3. ForMLP+LMP, the minimum is at = 1 with a frequency 0f0.00385802

4. For GMP, the minimum at = 0.41877523 with a frequency 00.04171907.

Pr(MLP,F; ,»©), Pr(LMP,F; ,»), Pr(MLP+LMP,F, ,») and Pr(GMP JF, ,») are plotted in
Figures 1, 2, 3 and 4.
These figures show that the vulnerability of BER/@sy close to the optimal value for MLP

(we obtain 0.0307 foe= 1/2 ) and, to a lesser extent, for GMP. Moreoveruih$ out that
NPER maximizes the probability of MLP, LMP and GMP.
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4. Monotonicity Failure under Single-peakedness

In some political or economic contexts, some peafee rankings appear to be very unlikely.
One common way to take this observation into actaairio assume that preferences are
single-peakedWhen preferences are single-peaked and threededes are in contention,



every voter agrees to consider that (at least)abitiee candidates is not the worst. Under this
assumption, the number of possible preference mgskis reduced from six to four.

4.1. More-is-Less Paradox under single-peakedness. [ML P+SP]

As shown in previous sections, scoring eliminatiole F, behave differently depending on
whether the weight is less than or greater th;arFor three-candidate elections, we are going

to show that F, exhibits MLP under single-peakedness only ok % This generalizes

earlier results by Lepelley et al. (1996) showihgtt under single-peakednegy, exhibits
MLP while F; does not. Without loss of generality, we assuna¢ itidividual preferences are
single-peaked with respect to ideological axig (a is the leftist candidatey the centrist
candidate and the rightist candidate). This amounts to assurthagonlyabc, bac, bca and
cba are admissible whilech andcab are not. Analytically, only voting situations diet form

x = (x1,0,x3,%4,0,x5) are consideredx{ = xg =0), with x; >0,x, =>0,x3 =>0,x, >
0andx; + x3 + x4 + x4 = 1, and using IAC in this context is tantamount tamsider that
every single-peaked situations is equally likelptaur.

Proposition 4.1 [ML P+SP] Assume that individual preferences are single-pgéakben

1. F, exhibits MLP at a voting situation only if the center-alternativé is not qualified for
the second round but wins after the winnex & moved up by some voters;

2. MLP never occurs unddf; fora > %

Proof. Assume that individual preferences are single-pgakith respect to the axisbc.

1. Suppose thah is qualified for the second round and for exanmglepposed ta. There are
two possible cases: (@ defeatsh. Thenx; > x; + x, + x, and thereforer is the Condorcet
winner. Thema up still wins after being moving up by some vot€ii$ b defeats . Suppose
loses against after being moving up by some voters. Recallirgt thdividual preferences
are single-peaked with respectdbc, it follows thatx; > x5 + x, + x;. But c receives less
points than a. Thus is xg < x¢ + Ax, < x; + Ax3 < x3 +x, +x; Which vyields a
contradiction. Thu$ still wins. In both cases, MLP does not occur.adig F, exhibits MLP
only if b is not qualified for the second round.

Now assume that is not qualified for the second round and for egkanthata wins against
in the runoff. Sincec is still losing againstt in a majority voting, then MLP occurs only
whena is losing againsh after being moved up by some voters.

2. Assume thati 2% and suppose thdf exhibits MLP at a voting situation. As shown

above,b is ruled out at the first round. Thatig + Ax; > x5 + x, + Ax; + Axg and xq +
(1—=Dxg > x3+Ax; + (1 —A)x,. If A =1 thenx, + x5 < 0 which is contradictory. Now

1 A 1 A .
assume thatl < 1, thenx; > x5 +t 5%t 5% and xg > x4 t 5%t 5% Since



1 >/12§ thenﬁ> 1 andéz 1. Thusx; > x3 + x4 + x5 = x¢ and xg > x4 + x3 +
x1 = x;. Clearly these relations are contradictory. TI’IDIISZ% , the center-alternative is
always qualified for the runoff and MLP never occmr

For A < % the inequalities that characterize MLP occurrenaee derived from Proposition
3.1. For example whea wins against but loses against after being moved up by some
voters, corresponding voting situations are charastd by the new set of inequalities
obtained from Proposition 3.1 by observing thandc hold symmetric roles; this amounts to
interchangingr; andx, ; x3 andxs; andx, andx,. For the single-peakedness assumption, we
setx, = xs = 0. We compute the corresponding 3-dimensional voltonebtain the MLP
probability under single-peakedness as follows:

Result 4.2 [ML P+SP]

(425-2523-5022+181+20)((1—22)3
72(2420)(1-1)2(2-2)2(2+A1—412)

For0 < A<=,Pr(MLP +SP,F;) =

ForA <=, Pr(MLP+ SP,F; )=0

N |-

4.2. Less-issMore Paradox under single-peakedness. [L M P+SP]

As in the case of MLP, LMP still occurs under seigkeakedness but for some specific
circumstances. Nevertheless a LMP seems to be priekes as all SER; still exhibit LMP
except ford = 0 and forAd = 0.5. In fact, this was already known from Lepelleyakt(1996)
for A = 0. Moreover, under the single-peakedness assumptitnthree candidates, there
always exists a Condorcet winner. Sincefet 0.5, F; always chooses the Condorcet winner
(see Smith, 1973), LMP never occurs under BER eilmegal, we observe the followings:

Proposition 4.3 [L M P+SP] Assume that individual preferences are single-pgéakben

1L Foro<a< % F, exhibits LMP at a voting situation onlyadf (or c) loses in the runoff
againstb but wins after being moved down by some voters;

2. For % < 1< 1, F; exhibits LMP at a voting situation onlydf (or ¢ ) wins in the runoff
againstb but loses after being moved down by some voters.

Proof. Very similar to the proof of Proposition 4.1 [LMBP].
For each possible case of LMP in Proposition 4.8, derive from Proposition 3.3 the

corresponding set of inequalities and set = x; = 0 for single-peakedness. The LMP
probability under single-peakedness is then giviryg



Result 4.4 [LMP+SP]

— 3
For0 < A< 1,Pr([LMP + SP], Fy) = 2520 (o240

432(1-1)%(2-1)

(1-221)%(6—1)

1
For-<A<1, Pr([LMP +SP],F) = —

4.3. Monotonicity failure under single-peakedness [M +SP]

Due to the existence of a Condorcet winner, thenmoi possible double monotonicity failure
under single-peakedness. We then deduce the plibpétat F; fails to satisfy monotonicity
asPr(GMP + SP,F, ) = Pr(MLP + SP,F;) + Pr(LMP + SP, F;), given by:

Result 4.5 [GM P+SP]

_921)3(216_0r15_£0)4 3 2_ _
ForO S A S%,PT(M-FSP, FA) — (1 2/1) (81 96A4°—591%+176A1°+3001°—-1401 120)

432(2+2)(4A2-1-2)(2—-21)2(1-2)3

(1-21)2(6-21)

1
For;S?\S 1, Pr(M +SP,F}) = 1081

Observe that a direct consequence of our resutite ifollowing:

Corollary 4.6 When preferences are single-peaked, there is odeoaly one SER for which
Monotonivcity failure never occurs in three-cand®laelections, namely the Borda

Elimination Rulé®

Table 4 displays some computed values Pef{ MLP + SP,F;), Pr(LMP + SP,F,) and
Pr(GMP + SP, F,) in terms of percentage.

2 Pr(MLP Pr(LMP Pr(GMP
+SP,Fy) + SP, F}) +SP,Fy)
0 1.74 0 1.74
0.1 1.20 0.17 1.36
0.2 0.68 0.21 0.90
0.3 0.28 0.15 0.44
0.4 0.05 0.04 0.09
0.5 0 0 0
0.6 0 0.33 0.33
0.7 0 1.12 1.12
0.8 0 2.17 2.17
0.9 0 3.36 3.36
1 0 4.63 4.63

Table 4. Vulnerability to monotonicity paradoxeswith single-peaked preferences

® We could give a direct proof of the more generakdason that, when there is a Condorcet
winner, there is one and only one SER for which bonicity holds, namely BER.



The main conclusions of this section are summairiz&able 5 and illustrated by Figures 4, 5
and 6.

Type MLP+SP LMP+SP GMP+SP
Amin [1/211] {0,1/2} §Z;
Prob,,in 0 0 0
A 0 1 1

Prob D 174% | —— ~ 4.63% | —— ~ 4.63%

mar 1988~ 17108 -7 1708 0 0

Table 5. Maximal and minimal vulnerability under single-peakedness
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LMP failure under single-peakedness
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MMonotonicity failure under single-peakedness
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5. Monotonicity of Scoring Elimination Rules on Specific Subdomains

Following Felsenthal and Tideman (2013), we now n@ika several sub-types of
monotonicity failure by considering alternately ypnloting situations at which the rule
exhibits a monotonicity paradox while the followingssumptions successively hold:
[CW] a Condorcet winner exists; [CYC] a cycle egjsiB] dynamic votersare better off
from changing their rankings; or [W] dynamic voteage worse off from changing their
rankings. For the last two cases, the set of caimssr should be reconsidered to take into
account only changes that benefit (or not) to wparshing up or down a candidate for MLP
or LMP. Possible combinations are also consideBdce [CW] and [CYC] are mutually
exclusive and [B] and [W] as well, we only considsiLP+CW]; [LMP+CW]; [M+CW];
[MLP+B]; [LMP+B]; [M+CW]; [MLP+CW+B]; [LMP+CW+B] and [M+CW+B] where [M]
stands for the monotonicity failure.

5.1. Monotonicity failurewith [CW]

It is easy to conjecture that a cycle in the majarelation favors monotonicity failures and,
indeed, most of the examples of such failures Wmatcan find in the literature contain a
majority cycle.A contrarig assuming the existence of a Condorcet winnerldhredluce the
vulnerability of SER's to monotonicity paradoxese @aluate in this subsection the extent of
this reduction.

1) More-is-LessParadox with [CW]

’ Felsenthal and Tideman (2013) cdiinamicvotersthose voters who change their preference in thingo
situation under consideration.



Only voting situations at which the positional dlwation rule F; exhibits MLP in the
presence of a Condorcet winner are considered. $otohg situations are identified by the
MLP set of constraints presented in Proposition &fjointly with the constraints that a
Condorcet winner exists. More precisely, wheits the winner againgt in the runoff and
loses against after being moved up by some voters, antan be the Condorcet winner. The
probability of [MLP+CW] is given by:

Result 5.1 For0 < A < 2, Pr(MLP + CW, F;) =

(1-21)3(129611%+1404A11-1036811°-390931°+9253618+6806517 —244480A°+71028A5+1693121%—12150413-135521%+332161—7872)
1728(1+2)(2+1)(1-21)3(2-1)2(2-31)4(4A2-1-2)

(1-21)3(2A%2-131-1)
43223

For-<A<1, Pr(MLP + CW,F,) =

2) LessissMoreParadox with [CW]

Only voting situations at which the positional dlation rule F; exhibits LMP in the
presence of a Condorcet winner are considered. Sotihg situations are identified by the
LMP set of constraints presented in Proposition &8jointly with the constraints that a
Condorcet winner exists. More precisely, whers the winner againgt in the runoff and
wins against after some voters move dowbnin their rankings, only: can be the Condorcet
winner. The probability of [LMP+CW] is as follows:

(1-22)%(4845+1601*+15113-1231%2-32161+204)

1
R%ult 5.2 FOI’O S /1 S E: Pr(LMP + CW, Fﬂ,) - 5184—(2—&)(1—1)3(2_31)

(1-22)% (145145412 -18A3+271%-615)
129644

For-<A<1, Pr(MLP + CW,F,) =

3) Monotonicity failurewith [CW]

For three-candidate elections, it turns out thatsnoring elimination rule simultaneously
exhibits MLP and LMP at the same voting situatiomew a Condorcet winner exists. Given
A € [0,1], assume thaff; exhibits MLP at a voting situation that admit€andorcet winner.
Without loss of generality, suppose thais wins againsb in the runoff and that loses
againstc after some voters move uapin their rankings. Then necessatilyeatsa. Thusa is
not the Condorcet winner; nér Hencec is the Condorcet winner aridis the Condorcet
loser. To see that LMP cannot occur, first suppibsé some voters move downin their
rankings. Since initially has the lowest score,is still ruled out in the first round and cannot
win at the new voting situation. Now suppose thame voters move dowih in their



rankings. Since is initially losing againstt andc, b cannot win at the new voting situation
even wherb is qualified for the runoff. In both cases, LM&aot occuft

We then deduce that the probability of monotonicigylure with [CW] is the sum
Pr(MLP,F,,CW) + Pr(LMP, F;,CW) given by:

Result 5.3 For0 < A < =, Pr(GMP + CW, Fy) =

(1-224)%(2592113-626411%2-35640A11-11957711°+6370431° 13111018 -166104217)
5184(1+A)(2+1)(1-2)3(2—-2)2(2-32)*(2+1—-412)

| (1-22)%(16373401°+63351215-15694881*+51236813+2708641%-2065921+36672)
5184(1+A)(2+1)(1-2)3(2—-2)2(2-32)4(2+1—-412)

(1-2)%(1+2A+214%+6613+151*-615)
1296214

For-<A<1, Pr(GMP +CW,F) =

Note that Pr(GMP + CYC, F}) = Pr(GMP, Fy ) — Pr(GMP + CW, Fy).

Computed values oPr(MLP + CW,F;),Pr(LMP + CW,F;) and Pr(GMP + CW,F;) in
terms of percentage are shown in Table 6.

A Pr(MLP Pr(LMP Pr(GMP Pr(GMP + CW, F;)
+ CW, F) + CW, F) + CW, F) Pr(GMP, F))
0 1.78 0.98 2.76 48.11
0.1 1.36 0.90 2.26 42.18
0.2 0.90 0.73 1.63 33.39
0.3 0.45 0.49 0.94 21.15
0.4 0.11 0.20 0.31 7.24
0.5 0 0 0 0
0.6 0.07 0.54 0.61 11.17
0.7 0.39 1.56 1.95 28.44
0.8 0.99 2.67 3.66 43.32
0.9 1.80 3.79 5.59 55.35
1 2.78 4.86 7.64 65.56

Table 6. Vulnerability to monotonicity paradoxes when a Condorcet Winner exists

Once again, due to the presence of a Condorcetewi8ER is the only SER that does not
give rise to monotonicity failure. Moreover, we ebg that the existence of a Condorcet
winner divide approximately by 2 the PER (globaljnerability to monotonicity paradoxes
whereas the NPER vulnerability is only divided b§.1

® This observation stands for every SER in three-candidate elections and generalizes a result given by Miller
(2012) for PER and by Felsenthal and Tideman (2014) for NPER and BER.



5.2. Monotonicity with [B]

Suppose that the voters are perfectly informedthatitheir preferences can be considered as
stable. In such a context, the only reasons subbtepd justify changes in individual rankings
are of strategic nature. Consequently, when a gdtituation can (potentially) give rise to a
monotonicity paradox, it is of interest to know \ilier the dynamic voters are better off or
worse off from changing their preference; in thestficase (dynamic voters better off), the
effective realization of the paradox is consideyahbre likely than in the second one.

1) More-is-LessParadox with [B]

Only voting situations at which the positional alation rule F; exhibits MLP while
dynamic voters are better off from changing thamkings are considered. Given a voting
situationx, suppose without loss of generality tlhatvins against in the runoff and loses
againstc after being moved up by some voters in their nag&i Since these changes should
be profitable for their instigators, only voterstgbebca, cab or cha are concerned.

Proposition 5.4 [MLP+B-a] Let x be a voting situation at which wins againsb in the
runoff and loses againstafter being moved up by some voters in their naggki Then MLP
occurs underF; in favor of voters changing their preferencesnfiaonly ifc wins when all
voters of typeba submitcab while an appropriate proportiom of bca type voters submit
abc.

Proof. Sufficiency.Supposec wins when all voters of typeba submit cab while an
appropriate proportion of bca type voters submitbc. Since both types of changes mave
up in individual preferences, MLP occurs.

NecessitySuppose that MLP occurs undgrin favor of voters changing their preferences.
Then there exists another voting situatioat whichc wins after som&, = bca, Rs = cab
or R¢ = cha type voters move up. Let y; , stand for the proportion oR; voters who move

up a overk candidates withj = 4,5 or 6 and k = 1 or 2. Theny = (x; + Y42, %, + V51 +

V6,20 X3 T Va1, X4 — Va1 — Ya2,Xs — Y51 T V6,1, X6 — Ye,1 — Ve6,2)-
We prove that it wins aty, thenc also wins at
Z = (X1 + Va2, X2, X3, X4 — Va2, X5 + X6, 0).
For this purpose let
A =S50,¢) =S, b) = (Sa(z,¢) — Sx(z,b)) and A" = [cMA] (y)a] — [cMA] (z)a]

where[cMAJ (y)a] is the difference between the proportion of voteh® preferc to a and
the proportion of voters who prefarto ¢ with respect tay; [cMA](z)a] is defined in the
same way. After basic algebraic simplifications,



A ==ty —tyap — (1 —)ys1 +tyer — (1 — 20)y62 — txe
S —tWa1 + Va2 —Ve1) — (L= )ys1— (1 = 20) Y6 — t(V6,1 + Ve,2) SINCEX,
= —tyar —tyap — (1= ys1 +tys1 — (1 = )ye2 < 0.
= Y61t Vo2

SinceA < 0 andc wins aty, we deduce that
Sx(z,¢) = S)(z,b) = S5 (y,¢) — S, (y,b) > 0. 1)
ThusS, (z,¢) > S,(z,b). Moreover,a wins atx and gains more points fromto z while the

score ofc does not increase. Th8g(z,a) = S, (x,a) > S;(x,c) = S,(z,¢) > S,(z,b).
Thereforeb is ruled out at the first stage givenin the runoff atz, note that

A= =2Y41—Yap — 2Y51 — 2¥62 < 0.
SinceA’ < 0 andc beatsz aty, we deduce that
[cMA](z)a] = [cMA](y)a] > 0.

Thereforec also wins atz. Finally from x to z, all voters of typecha submitcab while a
proportiont = y, , of bca type voters submitbc.m

The following result is derived from Propositiod 3MLP+B-a].

Proposition 5.5 [MLP+B] Letx be a voting situation at whialn wins againsb in the runoff
and loses against after being moved up by some voters in their nagéi Then MLP occurs
underF; in favor of voters changing their preferenceanitl only if

—xX;+ A =Dy —Axs +Ax, + (1 —Dxs+x =9, <0 (MLP1)
—Ax, FAxy —x3+ A —Dxg+x5+(1—Dxg=q, <0 (MLP2)
—X1—Xo+ X3+ X3 — X5+ X5 =0q3<0 (MLP3)

X1+ Xy +X3—X4—X5—Xg=0Qy <0 (MLP4)

and
1. For 1€ 03],
X1+ (1 —4D)x; + (B —2Dx3+ x4, + (21 —3)xs+ A —3)xs =qs <0
(MLP5)
2. For 1€ [%1] :
Ay —Axy +x3+ (1= Dxy — x5 —x6 =q6 < 0 (MLP®)

Proof. Letx be a voting situation at whiechwins againsb in the runoff and loses against
after being moved up by some voters in their ragkinThen by Proposition [MLP+B-a],
MLP occurs undeF, in favor of voters changing their preferencesnidl @nly if there exists
t € [0, x,] such that



S, (x,a) > S, (x,¢), S8, (x,a) > S, (x,c) andaMA]J(x)b® (MLP7)
Sy (z,a) > Sy(z,¢), Sh(z,a) > S, (z,c) and cMA](z)a (MLP8)

with z = (x; +t, x5, x3,x4 — t, x5 + x¢,0). Note that (MLP7) is equivalent to (MLP1),
(MLP2) and (MLP3). Then we only have to prove tgaten (MLP1), (MLP2) and (MLP3),
(MLP8) holds if and only if (MLP4) and (MLP5) holdr A € [o, %] ;and that (MLP4) and
(MLP6) hold for A€ [%1] Clearly, S;(z,a) > S)(z,¢) is a consequence & (x,a) >
S, (x,c) since some voters move up fromx to z. Therefore given (MLP1), (MLP2) and
(MLP3), (MLP8) is now equivalent t8,(z,a) > S,(z,¢) and cM(z)a. That is

(2/1_ 1)t< _/1x1 +ﬂx2 _x3 - (I_A)le_ +x5 +x6 = T1

2t<—x1—x2—x3+x4+x5 +x6=T2

Taking into consideration the sign of the coefinti@A — 1 and the fact that €]0, x,], it
appears that exists if and only if forA € [0%[ max(z;lr—il,O) <t <min (%,x4) and for

1 , Ty Ts3
AE ]2,1], 0<t<min (2/1_1, > ,X4)-

Now, forA € [0%[ there exists such that ma%, 0) <t <min (%,x4) if and only if

_Lhods o (MLP9)
2 2
T, T, Qs
22-1 2 2(1-22) <0 (MLP10)
Ty _ 9y
Ty, =< (MLP11)
0—x, <0 (MLP12)

Since (MLP9) and (MLP10) are respectively equivaten(MLP4) and (MLP5), to complete
the proof forA € [0%[ we have to prove that (MLP11) and (MLP12) cardisearded. We
omit (MLP12) as it has no influence on the 5-dimenal volume computed with < x,. To
see that (MLP12) is redundant, we simply rewijeas a sum of non positive terms:

1-A AZ4+A AZ4+A 5A2—5A+2 Qs 3A(1-2) qg
= —_ _—— X, — X ==
97 = %250 (a1 +qz) A2-A+172  AZ-A+173 T 2(A2-A+1)1-2X © AZ-A+1 2

<0.

Similarly, forA € E 1], there existg such thab < t < min ( L E,x4) if and only if

2A-1" 2
0-2=%<g (MLP13)
=3 < (MLP14)

2A-1 2A-1

°® aMAJ(x)b means that A beats B at x.



0—x,<0 (MLP15)

As mentioned above, (MLP15) has no influence on gkeluation of the 5-dimensional
volume computed for; =0, j=1,2,...,6 Finally (ML13) and (MLP14) are respectively
equivalent to (MLP4) and (MLP6).

For = % , (MLP1), (MLP2), (MLP3) and (MLP4) hold from (ML® and (MLP8). Moreover,
(MLP5) and (MLP®6) are now equivalemt.
From Proposition 5.5, the probability of [MLP+B} is

Result 5.6 For0 < A <2, Pr(MLP + B,Fy ) =

192A15-186411%+6970113-16218112+36786111-46938110-942001°+42206118-51671717 +962821°+33161315-2911974%+4123213+598201%2~333181+55
864(1+1)(2+1)(3-1)(1-2)3(2-2)3(412-21-2)(3A2-71+3)

For
loa<,
2

3219-44828+218317-528216471801°-55881%*+226113-30112-851+24

Pr(MLP +B,F, ) = 43223(2-2)2(41-212-3)

2) LessiissMoreParadox with [B]

Voting situations in consideration here are onlgsth at which the SER; exhibits LMP
while dynamic voters are better off from changihgit rankings. We proceed as in the case
of MLP. Given a voting situatiom, suppose without loss of generality tlhatvins againsb

in the runoff and that wins after being moved down by some voters inrtreikings. Since
these changes should be profitable for their iasbigs, only voters of typgac, bca or cha

are concerned. As with MLP, we identify changeg #r@ necessary and sufficient for this
specific type of LMP, that is [LMP+B].

Proposition 5.7 [LMP+B] Letx be a voting situation such thatwins againsb in the runoff
andb wins after being moved down by some voters im taakings. Then MLP occurs under
F, in favor of voters changing their preferencesntianly ifb wins when some proportian
of bac voters submit.cbh while some proportion of bca voters reporicha.

Proof. Very similar to the proof of Proposition 5.2 [MLB}:

Consequently LMP occurs under the assumption [Bindl only if there exists a proportion
¥3,2 Of bac voters submittingich and a proportioty, ; of bca voters submittingba in such
a way that now wins at the new voting situation which is tlgaving by



y= (x1’x2 + V32, X3 — V32, X4 — Va1, X5, Xe T 3’4,1)-

Necessary and sufficient conditions for [LMP+B] d@hen derived by looking at the set of
constraints ory,; andys, under whichb wins aty. Collecting all constraints op, ;, one
obtains [LMP+B] existence conditions depending antythe parameter; , and variables;.
The same operation is applied py,to obtain the following characterization:

Proposition 5.8 [LMP+B] Letx be a voting situation at whial wins againsb in the runoff
andb wins after being moved down by some voters im taakings. Then LMP occurs under
F; in favor of voters changing their preferenceantl only if

X+ A —Dxy —Axs +Ax, + (1 —ADxs + x4 <0
—X1— Xy +X3+Xx4 —X5+%x5 <0

=D +x)—(A=2D)(3+x,) — (L +D(x,+x5) <O
and

1. For A€ [o,%],
X1+ A =Dy +Axs+x,+(A—Dxs — (1 +Dxg <0
A4+ —x,—x)+ (A —=2DBx3—x5) —(1—-3)x3<0

2. For 1€ Eg] ,
A4+ —x4—x) + (1 —=2DBxy; —x5) —(1—-3)x3 <0

3. For 1€ El] :
A+ —x4—x) + (1 —2D)Bxy +3x3—x5) — (1 —Dxs <0
B—-2)(x; —x¢) +x,+x3+ (1 —4D)x, — (3 —4)xs <0
(164 —922 = 5)x; + (1 — 21 + 32%)(x, + x3)
+ (1=22-32%) (x4 —x¢) + (1 =814+91%)x5 <0

We derive from Proposition 5.8 that the probabiiffLMP+B] is:

Result 5.9 For

0< <2 Pr([LMP + B],F;) = 16A8+817-681°+1615-1442*+65513-8641%+4811—102
= =5 »TA) —

2592(1-1)*(1-2)

(1-2)(8A8-9217+4461°-73215+3471*—8313+1312-51+2)

, Pr({LMP + B],F)) = 12965(2-1)

1
ForES?\S

wIinN

Fors <A<1, Pr([LMP + B],F) =



56113-804112+4786A11-155221104+303881°-3770118+3013717 —151441°4+438815-4751%*—12813+6912-171+2
129645(2—-1)(1—-31+A2)

3) Monotonicity failurewith [B]

We now focus our attention on voting situation dtick the positional elimination ruldy
simultaneously exhibits LMP and MLP — or double mmmicity failure - while dynamic
voters are better off from changing their rankings.

Given a voting situatiorr, suppose without loss of generality tlzatvins againsb in the
runoff. Then MLP and LMP jointly occur under assuiop [B] if and only if (i) a loses
againstc after being moved up by some voters who are bettefrom changing their
rankings; and (iib wins after being moved down by some voters inrth@nkings. Such
voting situations are identified by the two setsofstraints presented in Proposition 5.2 and
Proposition 5.4. The evaluation of the correspogdiolume yields the following probability
that F)” both LMP and MLP at the same voting situation etall dynamic voters are better
off from changing theirs rankings:

Result 5.10 For0 < A <, Pr(MPL + LMP + B, F; ) =

13392117 -151218410+71017811° 1635907114 +981368113 +524629411% — 18571308111 +3281457441° 3758193317 +2911892528
1296223 +24%=5142) (1+2) (1-2)*(2—1)3 (312 -71+3) (2—31)2 (42-3)

| —1440100327+304877925+ 145576515 —16043491* +7172381° ~ 1866811+ 27720111836
1296(243+24%2=51+2) (1+4) (1-1)*(2—1)3 (342 =71+3)(2—321)2 (41-3)

1 2 _ (1-2)(3+381-21942+40313-3911*+20115-471°)
For><i<z, Pr(MLP +LMP +B, F; ) = 2963 (h—2) 2T —233)

For-<A <1, Pr(MLP + LMP +B, F; ) =

262145115-2806405114+14018622113-43323481112+92617090411 -145109259110+1722509551° —15794018148+11297916317

2
129623 (2-1)2(742=71+2)" (542 —51+2) (212 —42+3) (51 —101+4)

—631877831°+27477878A5-91515841%+226721613-39579212+436801—2304
1296A3(2-2)2(7A2=72+2)2(5A2=51+2)(2A2—4A+3)(542-101+4)

To obtain the probabilitr(GMP + B, F, ) that F, exhibits a monotonicity paradox while
dynamic voters are better off from changing thamnkings, note that

Pr(GMP + B, F, ) = Pr(MLP + B, F, ) + Pr(LMP + B, F; ) — Pr(MLP + MLP +
B, F; ).

After algebraic simplifications, the result is todlowing:



Result 5.11For 0 <A<, Pr(GMP +B, F; ) =

138241%2-437761%1-3658561204+172441611°-229432118-6007556A17 6224444110 +30150396115+80042172A1*
2592(3—421)(2—-31)2(243+2A2-51+2)(2+2)(1-1)3(3-1) (1+1)(3A2—71+3)(2—1)3(4A2—1-2)

. —3422176092%3+2520962761%+5730023961'1 —13384796201°+908077340A°+3750405621%-110526336117
2592(3-41)(2-31)2(243+242-51+2) 2+ 1) (1-1)3 (3-) (1+21) (342 -72+3) (2—-21)3 (412 -1-2)

. +7910481121°-158072500A°-1414028881*+12591552013-465220801%+88231681—705024
" 2592(3-44)(2-31)2(2A3+2A2=5142) (2+1)(1-1)3(3—1) (1+1) (342=71+3)(2—1)3 (412 -1—2)

For<A<Z, Pr(GMP+B, F, ) =
2 3

—8A10 + 6817 — 16248 + 18017 — 35316 + 54915 — 2861* + 11243 + 421% + 181 — 4
129615(1 — 2)2

For:<A<1, Pr(GMP+B, F, ) =

686001%22-14063001%214+128296701%20-6945272511° 4251061702118 647047199117 +1240417731116-1822285490115
1296A5(2—1)2(512—10A+4)(5A2—51+2)(7A2—71+2)2(12—31+1)2

+

2095718215114 -191365117611341396641104111%2-811844407111+36774907111°-1211250451°+21583778A8+420051917
1296A5(2-1)2(512—10144)(5A2—51+2)(7A2=71+2)2(12-31+1)2

—5309200A°+247447215-770232A*+17217613-270081%+26881—128
129615(2—21)2(512—10A+4)(5A2—=51+2)(7A2—=71+2)2 (A2 —31+1)2

Some computed values dfr([MLP + B],F;), Pr([LMP + B],F,,CW) and Pr([GMP +
B], F;) are shown in Table 7.

Pr([MLP Pr([LMP Pr([GMP | Pr(GMP+BLFy)

2 + 1% Fy) + 1% Fy) pr([MF ++BLM Ple)| + 1,% Fy) Pr(GMP,F2)

% % % (%)

0 2.21 1.97 0.24 3.94 68.5
0.1 2.01 1.92 0.20 3.72 69.6
0.2 1.80 1.85 0.17 3.48 71.2
0.3 1.65 1.79 0.16 3.28 73.7
0.4 1.60 1.80 0.19 3.22 76.9
0.5 1.74 2.08 0.34 3.47 79.0
0.6 2.24 2.22 0.41 4.04 74.3
0.7 2.90 2.04 0.38 4.56 66.6
0.8 3.72 2.14 0.41 5.46 64.5
0.9 4.63 2.36 0.40 6.59 65.3

1 5.56 2.70 0.38 7.87 67.6

Table 7. Vulnerability to monotonicity paradoxes when dynamic voters are better off

It turns out from Table 7 that dynamic voters ag#dr off (and hence incited to effectively change
their preferences) in a large proportion of thaseations than can give rise to monotonocity fagkur
This proportion is maximadt 1 = 0.51423028 with a proportion 0f79.19% which is almost the
performance of BER.



5.3. Monotonicity failurewith [CW+B]
1) More-is-LessParadox with [CW+B]

Let us recall that under the assumption [MLP+CW+BRhly voting situations that
simultaneously meet the following requirements asreconsideration: (i) the positional
elimination ruleF, exhibits MLP; (ii) there exists a Condorcet winnand (iii) dynamic
voters are better off from changing their ranking$ena is wins againsb in the runoff and
loses against after being moved up by some voters, voting sibuat that satisfy [CW+B]
conditions are those that simultaneously satisfiystraints provided in Proposition [MLP]
and Proposition [MLP+B] conjointly with the factatc is the Condorcet winner. From the
corresponding volume, the probability of [MLP+CW-+B]given by:

Result 5.12 For0 < A <=, Pr(MLP + CW + B, Fy) =

(1-22)3(1728413-6912112-10980111+36352110+1235351°~27090718 17067317 +6362231°—20378215-3981761%+29683213+252481%~774721+19008)
1728(3-41)(1+2)(2+2)(1-1)3(2-32)3(2—-1)2(3-1) (2+1—4A12)

(1-21)3(242-131-1)
43223

For-<A<1, Pr(MLP + CW + B,F,CW) =

2) LessissMoreParadox with [CW+B]

Under the assumption [LMP+CW+B], only voting sitioats that simultaneously meet the
following requirements are in consideration: (igtpositional elimination rulé&, exhibits
LMP; (i) there exists a Condorcet winner; and) (dynamic voters are better off from
changing their rankings. When wins against in the runoff andb wins againsic in the
runoff after being moved down by some voters, \@tsituations that satisfy [CW+B]
conditions are those that simultaneously satisfiystraints provided in Proposition [LMP]
and Proposition [LMP+B] conjointly with the factaha is the Condorcet winner. We
compute the corresponding volume to obtain the gdvdity of [LMP+CW+B] given by:

Result 5.13

_ 2 6 5_ 4_ 3_ 2 —
For0 <1< %,PT(LMP +CW +B,FA) — (1-22)%(24A°+44A°—-52A*-851°—1541°+4231—-204)

5184(2-1)(1—1)3(2-31)

(1-2)(1-21)%2(22%-17234+56A%2+61+1)
129644

For-<A<Z,Pr(LMP +CW + B,Fy) =

(1-22)%2(1+A+421%2-8413+751%~1425)
129614

Fors <A <1,Pr(LMP +CW + B,Fy) =

3) Monotonicity failurewith [CW+B]

As shown above, for three-candidate elections, B& Simultaneously exhibits MLP and
LMP at the same voting situation that admits a @oocet winner. Thus the probability of
monotonicity failure under the assumption [CW+B§isiply the sum



Pr(GMP + CW + B,F;) = Pr(MLP + CW + B, Fy) + Pr(LMP + CW + B, F;)
given by:
Result 5.14 For0 < A <=, Pr(GMP + CW + B, Fy) =

(1-22)?(3456A15+172811% 84600113 +44732112+36128411 +461583110-24243491°-11855118+607714917 —48168001°—275034815)
5184(3—41)(1-1)3(2+ ) (1+1)(2-31)3(3-21)(2—-1)2 (412—1—2)

., (1-22)?(50843681* 147134413 -9086881?+6543361—-115776)
' 5184(3—-42)(1-2)3(2+1)(1+1)(2-32)3(3-1)(2-2)2(4A2-21-2)

(1-22)2(1+224+174%2+1143+72*-225)
129614

For-<A <=, Pr(GMP + CW + B,F)) =

N |-
wIinN

(1-22)2(1-2A+912+631*—1425)
1296214

For-<A<1, Pr(GMP +CW + B, F;) =

Table 8 displays some computed value®fMLP + CW + B, F;), Pr(LMP + CW + B, F;)
andPr(GMP + CW + B, F;) in terms of percentage.

A | Pr(MLP | Pr(LMP | Pr(GMP | Pr(GMP + CW + B,F;) | Pr(GMP + CW + B,F;)
+CW + W +CW Pr(GMP + CW,Fy) Pr(GMP + B, F)
+B,F) | +B,F) | +B,F)

0 0.95 0.98 1.93 70.16 49.26
0.1] 0.75 0.86 1.61 71.38 43.28
0.2] 052 0.68 1.20 73.31 34.38
03| 0.27 0.45 0.72 76.89 22.08
04| 0.07 0.18 0.25 84.67 7.96
0.5 0 0 0 0
0.6| 0.07 0.20 0.27 44.90 6.75
07| 0.39 0.47 0.86 44.26 32.79
0.8] 0.99 0.80 1.79 48.84 32.79
09| 1.80 1.78 2.98 53.30 45.19

1 2.78 1.62 4.40 57.58 55.88

Table 8. Vulnerability to monotonicity paradoxeswith a Condorcet Winner and
dynamic voters better off

6. Monotonicity Paradox in Three-Alternative Close Elections

Miller (2012) have shown, with the help of simutats, that the frequency of MLP paradox
can be very high (up to 50%) under PER when elestare close. This issue is investigated
in the present section.

Election closeness is measured by the average mwhpeints (denoted by ) obtained by the
last ranked candidate, i.e. by his (her) scoredéidiby the numban of voters. We suppose
that every voting situation with a specified valfea is equally likely to occur (IAC type
assumption). We only focus here on PER, BER andR&kd we assume large electorates.



6.1. Plurality Elimination Rule

Under PER,a¢ can be interpreted as the percentage of votesngot by the last ranked
candidate (plurality losefy and elections become closer and closer whéncreases and
tends to its maximal value 1/3. We aim to comphbeeprobability of monotonicity failures as
a function of this parameter

a) More-is-Less Paradox

We use here the possibility offered by Barvinokg®athm of obtaining quasi-polynomials as
functions of more than one parameter. kéte the number of votes obtained by the plurality

loser in the first round when PER is implementedtérnthata = S). We are able to obtain

representations foD (MLP, Fy,n, k)| and for|D(n, k)|, that give for each value of andk
the number of voting situations giving rise to Mludder PER and the total number of
possible voting situations (respectively). We abténe probabilityPr(MLP, Fy,n, k) by
dividing |D(MLP, Fy,n, k)| by |D(n, k)|. The resulting representation is very complexvioeit
can easily obtain close form relations by consigthe limiting case im: for that purpose,
we replacek with an in Pr(MLP, Fy,n, k), and makingn tend to infinity, we have just to
consider the coefficient of the leading term nnto obtain the limiting representation
Pr(MLP, Fy, », a) that gives the desired probability as a functibrr.o

The probability of MLP under PER is thus given as:

(1-a)(Ba-1)(6a%—-6a+1)  (-a)(6 6a+1)
— 24 a)(6a?-6a 1
Result 6.1 (MLP, Fy, ®,a) = — ot = P Ga—1) , fo r
12

<a<

[SSEREY

Pr(MLP,Fy,0,a) =0, for0 < a <=,
b) Less-is-More Paradox

Proceeding as for MLP, we obtain :

3_ 2 —
Result 6.2 (LMP, Fy, 00, q) = 224 222770710 qorl < g <2
27a(1-3a?) 4 3’
(6a—1)?(12a?+4a+1) 1 1
Pr(LMP, Fo, , a) = 216a(3a—-1)(3a%-1) ' for xs

Pr(LMP,Fy,0,a) =0, for0 < a <=,

c) Monotonicity Paradox (GMP)

The probability of having both MLP and LMP is :

° This is one of the closeness measures used byrN2i04.2).



126a3-174a%4+77a-10
54a(1-3a?)

g, andPr(MLP + LMP, Fy,00,a) =0 , for0 < a < %

Result 6.3 Pr(MLP + LMP, Fy,, @) =

=~Pr(LMP,Fy,a), for; < a <

We deduce from the above representations that tbbapility of Global Monotonicity
Paradox is given as:

288a3-498a%+266a—37
54a(1-3a?)

1
Jfor-<a <

Result 6.4 (GMP, Fy, 0, a) =

WIH

(6a—1)?>(12a?+4a+1) fOI’—

Pr(GMP, Fy, 0, a) = 216a(3a-1)(3a2-1) ’

<a S -, andPr(GMP, F,,a) = 0 , for

OSa<l.
6

Table 9 displays some computed values PoflMLP, F,,,a), Pr(LMP,F, o,a) and
Pr(GMP, Fy, », a) in percentages.

a Pr(MLP, Fy, a) Pr(LMP,F,, a) Pr(MLP Pr(GMP,F,, a)
+ LMP, Fy, @)
<1/6 0 0 0 0
A7 0 .005 0 .005
.18 0 .084 0 .084
.19 0 273 0 273
.20 0 .600 0 .600
21 0 1.100 0 1.100
.22 0 1.825 0 1.825
.23 0 2.847 0 2.847
.24 0 4.275 0 4.275
.25 23.077 6.268 3.134 26.211
.26 27.562 8.437 4.219 31.780
27 31.595 10.279 5.140 36.734
.28 35.236 11.836 5.918 41.154
.29 38.540 13.146 6.573 45,113
.30 41.553 14.240 7.121 48.672
31 44,316 15.147 7.574 51.889
.32 46.868 15.890 7.945 54.813
1/3 Ya 1/6=16.667 1/12=8.333 7/12=58.333

Table 9. Vulnerability to monotonicity paradoxes under PER asa function of the
closeness parameter (large elector ate)

6.2. Borda Elimination Rule

Parameten is now the average number of points obtained bydhkt ranked candidate when
the candidate score is computed with the Borda.Rualerder to compare the BER results to
those obtained with PER, we consider here that gatdr gives 2/3 point for a first position,

1/3 for a second position and 0 point for a thirl dast position. This rescaling allows
Parameteun to range from 0 to 1/3.



Using the same approach as for PER, we obtainthigaprobability of MLP under

given as:
2(4536a3-4680a%+1572a—173 11 1
Result 6.5 (MLP, Fy 5, 0, a) = 2 ) forl<g<t
: 621a3-459a24+99a—7 3 3
18a—5)%(324a%-108a—1 5 11
Pr(MLP, Fys, 00, @) = —2a=5) ) _ for2<a<i
. 27(1-3a)(621a3-459a2+99a-7) ’ 18 36

Pr(MLP,Fy5,00,a) =0, for0 < a < —.

We obtain for LMP:

2(1-4a)(180a?-96a+13) 5
Result 6.6 (LMP, Fos, o, @) = 621a3-459a2499a-7 ' f 18

Pr(LMP,F,, 0, @) = (ba—1)" forl<a<=>
» 705 T 24(3a-1)(621a3-459a2+99a-7) 9~ 7 T 18’
(6a—1)*
(0] = —
Pr(LMP, Fos, 0, @) 12(2835a4-1836a3+432a2-48a+2) '

Pr(LMP, Fys5,00,a) = 0, for0 < a <.

The probability of having both MLP and LMP is :

Result 6.7 Pr(MLP + LMP, Fy , 00, o) = 28a=7)(756a” ~450a+67)

1
for — S <
3(621a3-459a2+99a-7) 3

_c)3 _
Pr(MLP 4+ LMP,Fy5,,a) = (18a-5)°(18a=7) 11

5
for=<a<

27(1-3a)(621a3-459a2+99a~-7) ' 18~ ~ ~ 36

Pr(MLP + LMP, Fy5,00,0) = 0, for 0 < o < —.

Hence:

2(2160a -1044a? +84a+11)
Result 6.8 (GMP,Fys5,,a) = — 3 (62107 455a7 199a—7) ,for—

<ac<l,
Pr(GMP, Fys,,a) = Pr (LMP, Fo5,00,), for- < a < —,

Pr(GMP, Fy5,00,a) = 0,for0 < a <.

BER is



Computed values are given in Table 10.

a Pr(MLP,Fys,a) | Pr(LMP,F,s, a) Pr(MLP Pr(GMP,F, s, a)
+ LMP, F, s, )
<1/6 0 0 0 0
A7 0 .000+ 0 .000+
.18 0 .001 0 .001
19 0 .008 0 .008
.20 0 .028 0 .028
21 0 .073 0 .073
22 0 156 0 .156
.23 0 293 0 .293
24 0 510 0 510
.25 0 .848 0 .848
.26 0 1.356 0 1.356
27 0 2.149 0 2.149
.28 132 3.408 .002 3.539
.29 4.005 5.460 .309 9.156
.30 13.633 8.681 2.058 20.257
31 30.830 13.452 07.475 36.818
.32 56.406 20.212 17.366 59.252
1/3 1 1/3 1/3 1

Table 10. Vulnerability to monotonicity paradoxes under BER as a function of the
closeness parameter (large elector ate)

6.3. Negative Plurality Elimination

Assuming that each voter gives ¥z point for a fossition, ¥2 point for a second position and
0 point for a last position, Parameteranges from 0 to 1/3.

The results are the following:

3(4a-1)2
2(6a2-6a+1) '

Result 6.9 (MLP, F,, a) = — forz<a <

WIH

Pr(MLP,Fy,a) =0 ,for0 < a <-.

Result 6.10 (LMP, F;,a) = (4a—1)(1008a7 _sza +229a—20) for— <a< l,
54(1-2a)(6a*—6a+1) 3

(6a—1)?(48a%>—20a+1) 1 1

Pr(LMP,F,,a) = 23203 2a-1) , fo r a < "

Pr(LMP,Fy,a) =0 ,for0 < a <-.



— 2_
Result 6.11 Pr(MLP + LMP, F;,a) = (“1‘2‘)8(12)5_81‘3‘2‘60[2122:)” for ~

<a<i
3

(4a—-1)*
8(1-2a)(3a-1)(6a2—6a+1)

Pr(MLP + LMP,F,, @) = for=<a<—

24
Pr(MLP + LMP,F,,@) =0 for0 < a < i

Hence:

3_ 2 —
Result 6.12 Pr(GMP, Fy, @) = 2o T050X 1222021 o 7 < g <,
108(1-2a)(6a2—6a+1) 24 3

36288a*-48816a3+23652a%—-4936a+377
216(1—2a)(3a—-1)(6a2—6a+1)

Pr(GMP,NPER, ) = for<a <,

Pr(GMP,Fy,a) = Pr(LMP,NPER, @) for- < a <

N

Pr(GMP,F;,a) =0 for0 < a <-.

Computed values are displayed in Table 11.

a Pr(MLP,F;,a) Pr(LMP, F;,a) Pr(MLP Pr(GMP,F;,a)
+ LMP,F, )

<1/6 0 0 0 0

17 0 .029 0 .029
.18 0 415 0 415
.19 0 1.139 0 1.139
.20 0 2.083 0 2.083
21 0 3.156 0 3.156
.22 0 4.281 0 4.281
.23 0 5.397 0 5.397
24 0 6.454 0 6.454
.25 0 7.407 0 7.407
.26 1.554 8.460 .002 10.013
27 5.257 9.708 .032 14.936
.28 10.305 11.028 176 21.167
.29 16.313 12.345 .637 28.021
.30 23.077 13.604 1.638 35.043
31 30.487 14.752 3.047 42.190
.32 38.482 15.733 4.928 49.286
1/3 Yo 1/6 1/12 7112

Table 11. Vulnerability to monotonicity paradoxes under NPER as a function of the
closeness parameter (large elector ate)




6.4. Comments

As expected, the probability of Monotonicity parafss) increases when elections become
closer and closét and may reach very high values when the three idare$ obtain
approximately the same score (7/12 for PER and NBB&dR1 for BER!). Of course, such
(quasi) tied elections are very rare. However, tedlas where the last ranked candidate
obtains 25% of the total score appears to be mtaxesiple and it is rather worrying to
observe that, in such situations, PER exhibits gmistant vulnerability to monotonicity
failures (more than .26). This observation corrabes Miller's findings about PER (Miller,
2012).

In order to compare PER, BER and NPER, it is imgartto point out that the frequency
distributions of the various values of parametere not similar for these three voting rules.
For each of them, we have computed the proportiovoting situations having an election
closeness measure lower thgrfor a. in [0,1/3] (to save space, the associated reprasems
are omitted). Thanks to these results, we aretaljpeopose the following Table, that allows a
fair comparison between PER, BER and NPER.

Monotonicity Per centage of
Paradox (GM P) voting situations
Vulnerability
PER BER NPER
>50% 1,71% 2,00% 1,21%
>20% 13,28% 7,28% 22,29%
>10% 13,28% 11,33% 36,04%
>1% 28,42% 34,00% 78,64%
>0% 53,47% 84,37% 86,42%
Average value™ 5,74% 4,40% 11,65%

Table 12. Proportion of situations associated to various levels of monotonicity failure

To illustrate, Table 12 indicates that 13,28% oé toting situations exhibits a risk of
monotonicity failure higher that 20% when PER igdisOn the other hand, PER is, among
the three rules under consideration, the one faclwtine proportion of voting situations with
a zero risk is the highest (46,53% for PER, 15,682BER and 13,58% for NPER).

7. Conclusion

The most salient conclusions that emerge from a@lcutations can be summarized as
follows:

' We note that LMP occurrence implies> 1/6 (for the three rules under considerationjerehs MLP
occurrence implies closer elections> 1/4 for PER (in accordance with Miller, 201&)> 5/18 for BER and
> 1/4 for NPER.

 These values come from Section 2.



- Contrary to what intuition could have suggestB&ER (1 = 1/2) is not the SER that
minimizes the vulnerability to monotonicity para@sx minimizing the probability that MLP
or LMP occur impliest = .42. However, BER is optimal when a Condorcet WWmexists
(i.e. in 93.75% of the voting situations under A€ assumption): in these situations, BER is
immune to monotonicity failure in three-candidakecgons and it is the only SER for which
this is true.

- The very poor performance of NPER (or Coombs riled = 1) is to be pointed out: in
almost each of the "scenarii" we have been consigleNPER is the SER thataximizeghe
probability of monotonicity paradoxes. Notice howevhat NPER minimizes the likelihood
of double monotonicity failure.

- The picture is partly modified when strategicexdp are taken in consideration: in 79% of
the voting situations that are susceptible to gige to monotonicity paradoxes under BER,
moving up the winner (or moving down a loser) isdfecial for some voters; for PER and
NPER, these percentages are only 68.5% and 67.6%eVér, BER remains less vulnerable
than PER and NPER even when attention is restriiesltuations where some voters are
strategically incited to move up the winner or moesvn a loser in their preferences.

- When three-alternative elections are close, thle an monotonicity failure is surprisingly
high for PER, BER and NPER. This is particularlyetrfor PER: when the score in the first
round of the last ranked candidate exceeds 25%h (slections are not so infrequent), the
probability of GMP is higher than 32% under PERIsTlesult is in accordance with Miller
(2012) and supports his conclusion that "monotoyifailure should not be dismissed as a
rare phenomenon”.

Finally, it is important to emphasize that all quobability results are dependent on the IAC
assumption, that has been considered throughaip#per. We do not claim here that these
results give realistic estimates of monotonicityui@s in real-world elections. We conjecture
however that the hierarchy of the voting rules wsam is robust. This conjecture is
supported by a recent paper by Gehrlein and Plassr(2014), who compare theoretical
probabilities based on the IAC assumption and eogbiprobabilities obtained from observed
and simulated data, regarding the Condorcet Effiies? of five voting rules; they find that,
although theoretical and empirical probabilitiese afairly different, the two sets of
probabilities lead to the same qualitative conclnsi

B A voting rule's Condorcet Efficiency is defined #® conditional probability that the rule will etethe
Condorcetvinner in an election, given that a Condorcet wingmasts.
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Appendix
Proof of Proposition 2.1

1) By definition of D(MLP, Fy 5, 1) 4,c), Situation x is characterized by:
Sos(a,x) > Sys(c,x), Sos(b,x) > Sys(c,x) and aMAJb in x Q)

and  Sos(a,y) > Sos(b,y), Sos(c,y) > Sos(b,y)and cMAjainy (2)
whereaMAJb means that a majority of voters predeto b.
In the extreme case, (1) must be transformed 2¥dy all the following improvements (for
a):

- All voters of type R; = bac change their preferences By = abc,

- All voters of type Rg = cha change their preferences &3 = cab.
Note that, with BER, the passage fr&nto R, has no effect on the difference between the
scores ob andc.
Hence, in the extreme case, situatjois given by:y = (n; + nz+,n,,0,n4,n5 + ng, 0) and
we have: Sos(a,y) = Sos(ax) + (n3+ng), Sos(b,y) = Sos(b,x) — (n3 +ng) and
So5(c,¥) = Sos(c, x).
It follows that the first inequality in (1) is reddant since: Sys(a,y) > Sys(a,x) >
Sos(c,x) = Sos(c,y) > So5(b,y).
We get the first characterization system by writing five remaining inequalities.

2) Theproof can be obtained as a particular case of thef @f Proposition 3.1 by replacing
thex;’s by n; and by takingl = 0.5.



