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1 Introduction

In cooperative game theory, the power of a player in a voting game is defined as the

probability to be decisive in the collective choice process. In a weighted voting game, if each

player is given a weight that is both strictly positive and strictly lower than the quota, it

could be expected that the voting power of every player is different from 0, that is that

there is no dummy player. However, several (real) examples are given in the literature,

showing that dummy players do exist. One of the most famous occurrences of a dummy

player is offered by Luxembourg in the Council of Ministers of the EU between 1958 and

1973. Luxembourg held one vote, whereas the quota for a proposition to be approved was

12 out of 17. Since other member states held an even number of votes (4 for Germany,

France and Italy, 2 for Belgium and The Netherlands), Luxembourg formally was never

able to make any difference in the voting process and was a dummy. Such situations are

obviously extremely undesirable but we should not worry about them if it could be shown

that their occurrence is rare. Unfortunately, it is demonstrated in Barthélémy et al. (2011)

that the theoretical probability of having a dummy player is far from being low, at least

when the number of players is small. However, the study by Barthélémy et al. is restricted

to majority voting games, in which 50% of the votes (weights) are sufficient for a proposition

to be accepted. The purpose of the present study is to analyze more general weighted voting

games and to investigate the impact of the quota value on the occurrence of a dummy player.

We compute in this paper the probability to obtain a dummy player as a function of the

quota and we determine the quota values which minimize and maximize this probability in

weighted voting games.

To the best of our knowledge, the only related work is a paper by Zuckerman et al. (2012)

who study the effects that a change of the quota may have on a given player’s power. They

provide, in particular, an efficient algorithm for determining whether there is a value of the

quota that makes a given player a dummy. The results they obtain demonstrate that even

small changes in the quota can have a significant effect on a player’s power. These authors,

however, adopt an algorithmic and computational perspective, clearly different from our

probabilistic point of view.

The paper is built as follows: in the second section, our notation, definitions and as-

sumptions are introduced. In the third section, we present analytical results for 3 and 4

players. Some numerical results obtained by computer enumerations and simulations for

more than 4 players are given in section 4. The main teachings of our study are summarized

and discussed in the fifth section.
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2 Notation, definitions and assumptions

A voting game is a pair (N,W ) where N is the set of n players (or voters) and W the set

of winning coalitions, that is the set of groups of players which can enforce their decision.

In this paper, we consider the class of weighted voting games [q;w1, w2, ..., wn], where q

is the quota needed to form a winning coalition and wi is the number of votes (weight) of

the ith player ; we assume that q and wi are integers. A coalition S is winning if and only

if
∑

i∈S wi ≥ q. The total number of votes,
∑

i∈N wi, is denoted by w. A particular case is

the majority game where qmaj =
w
2 +1 if w is even and qmaj =

w+1
2 if w is odd. We assume

that the game is proper, that is q ≥ qmaj . When q = w, we get the unanimity rule: each

player has a veto power and is not a dummy. Our study will focus on the weighted voting

games such that q < w. Notice that we can also write q = w−m with m ∈ {1, 2, ..., w2 − 1}
if w is even and m ∈ {1, 2, ..., w−1

2 } if w is odd.

It is supposed that each player has at least one vote and never more than q−1 votes (there

is no dictator). We also assume, without loss of generality, that q > w1 ≥ w2 ≥ ... ≥ wn ≥ 1.

The relative quota is denoted by Q with Q = q/w.

A voter i is a dummy player in a voting game (N,W ) if S ∈ W implies S\{i} ∈ W for

every S ∈ W . In words, player i is never decisive in every winning coalition: the coalition

wins with or without him (her). In voting power theory (see Straffin, 1994, and Felsenthal

and Machover, 1998, for a presentation), it means that this player has no power. The purpose

of this paper is to compute the probability of obtaining a dummy player, given n, w and

q (or Q), and to derive the quota which minimizes this probability (denoted by q or Q)

and the quota which maximizes this probability (denoted by q or Q). The probability of

having at least one dummy player is denoted by P (w, n, q) or P (w, n,Q) when w is finite

and P (n,Q) when w is infinite.

In order to compute P (w, n, q) (or P (w, n,Q) or P (n,Q)), we consider a particular

probabilistic model called IAC (Impartial Anonymous Culture) which is one of the most

often used in such problems where the likelihood of a voting event is to be calculated (see,

for instance, Gehrlein and Lepelley, 2011). In our context, using this model is tantamount

to assume that, n, w and q being given, all the possible distributions of the wi’s such that

(q > w1 ≥ w2 ≥ ... ≥ wn ≥ 1 and
∑

i∈N wi = w) are equally likely to occur. To illustrate,

suppose that n = 3 (three players), w = 5 (the total number of votes is equal to 5) and

q = 4 (quota). It is easy to check that, under our constraints, the only possible distributions

of the votes between the three players are (3, 1, 1) and (2, 2, 1). The IAC model assumes

that each of these two distributions occurs with a probability equal to 1/2. Observe that,

in the first distribution, the player 3 is not a dummy whereas he (she) has no voting power

in the second one. We conclude that P (5, 3, 4) = 1/2.
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3 Analytical representations

3.1 Preliminary results

We first present preliminary results concerning the general possibility of obtaining a

dummy player in a weighted voting game. We know that there is no dummy player when

q = w. We also know from Leech (2002) (see also Barthélémy et al., 2011) that, in the three-

player case, there is no dummy player when q = qmaj . Can we find some other values of q

and n (the number of players) for which the “dummy paradox” never occurs? The following

propositions give a negative answer to this question (as soon as w, the total number of

votes, is not very small).

Proposition 1 If w is sufficiently large and n > 3 then there exists a game [q;w1, w2, ..., wn]

such that the player n is a dummy player for each value of q ∈ {qmaj , ..., w − 2, w − 1}.

This result is a consequence of the following lemmas, the proofs of which are given in

Appendix.

Lemma 1 Consider the case where m = w
2 − 1, that is the majority case with w is even. If

w ≥ 6n− 12, then there exists a game [q;w1, ..., wn] whatever n > 3 for which the player n

is a dummy.

Lemma 2 Consider the case where m ≥ 2n− 5 and m ̸= w
2 − 1. If w ≥ 2n− 1, then there

exists a game [q;w1, ..., wn] whatever n > 3 and m for which the player n is a dummy.

Lemma 3 Consider the case where n− 2 ≤ m < 2n− 5. If w > 5n− 10, then there exists

a game [q;w1, ..., wn] whatever n > 3 and m for which the player n is a dummy.

Lemma 4 Consider the case where 0 < m ≤ n−2. If w > (m+1)n−m2, then there exists

a game [q;w1, ..., wn] whatever n > 3 and m for which the player n is a dummy.

Proposition 1 only deals with at least 4 players. Proposition 2 presents a similar result for

the 3-player case for q > qmaj .

Proposition 2 In the three-player case, there exists a game [q;w1, w2, w3] such that the

player 3 is a dummy for each value of q, q < w and q ̸= qmaj.

Proof. Consider the game [q; q − 2, w − q + 1, 1]. We have to show that w1 ≥ w2 ≥ w3 (1)

and the player 3 is not a dummy player i.e. w1 + w2 ̸= q − 1 (2).

(1) w2 ≥ w3 if w − q + 1 ≥ 1 or w ≥ q which is always true. Furthermore, w1 ≥ w2 if

q − 2 ≥ w − q + 1 or q ≥ w+3
2 which is always true since q ̸= qmaj .

(2) We have w1 + w2 = w − 1 which is different from q − 1 since q < w. QED
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3.2 The case with 3 players

In this subsection, we derive probability representations for the 3-player case. These

representations are based on the following lemma.

Lemma 5 In a 3-player weighted voting game, a dummy player exists if and only if

w1 + w3 < q and w1 + w2 ≥ q.

Lemma 5 (the proof of which is given the Appendix) offers a very simple characterization

of the vote distributions giving rise to a dummy player and makes possible the derivation

of the following representation for P (3, w, q).

Proposition 3 For w = 9 modulo 6, the probability P (3, w, q) is given as

• for (w + 1)/2 6 q 6 (2w + 2)/3:

P (3, w, q) = −3(w2 + 2w(1− 2q) + (2q − 1)2)

2w2 − 6wq + 3(q2 − 1)
for q odd,

P (3, w, q) = −3(w2 + 2w(1− 2q) + (2q − 1)2)

2w2 − 6wq + 3(q2 − 2)
for q even;

• for (2w + 3)/3 6 q 6 w:

P (3, w, q) =
3(3w2 + 2w(1− 4q) + q(5q − 2)

2w2 − 6wq + 3(q2 − 1)
for q odd,

P (3, w, q) =
3(3w2 + 2w(1− 4q) + 5q2 − 2q − 1)

2w2 − 6wq + 3(q2 − 2)
for q even.

Proof. We compute first the total number of vote distributions in the 3-player case. The

parameters w and q being given, our constraints imply that a vote distribution is a vector

of integers (w1, w2, w3) such that:

w1 ≥ w2, w2 ≥ w3, w3 ≥ 1, n1 < Q and w1 + w2 + w3 = w. (1)

We know from Ehrhart’s theory and its developments (see Lepelley et al. 2008) that the

number of solutions of such a set of inequalities is a periodic quasi polynomial in w and q.

This quasi polynomial can be obtained by using algorithms recently developed by, among

others, Clauss and Barvinok (see, once again, Lepelley et al. for a presentation of these

algorithms). In our case, the period that is associated to parameter w is equal to 6 and the

period associated to q is equal to 2. It means that the polynomial slightly differs depending

on whether q is odd or even, and on whether w, w + 1, w + 2, w + 3, w + 4 or w + 5 is a
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multiple of 6. We only consider in what follows the polynomial that we obtain for w = 9

modulo 6, i.e. for w + 3 multiple of 6. This polynomial is the following:

−1

6
w2 +

1

2
qw − 1

4
q2 +

1

2
if q is even,

−1

6
w2 +

1

2
qw − 1

4
q2 +

1

4
if q is odd.

Consider now the number of vote distributions for which a dummy exists. From Lemma 5,

these vote distributions have to verify (in addition to conditions (1)):

w1 + w3 < q and w1 + w2 ≥ q. (2)

The polynomial giving the number of integer solutions of the sets of inequalities (1) and (2)

differs depending on whether w is odd or even, but also on the value of q with respect to

w. Two domains have to be distinguished.

For w odd, q odd or even and (w + 1)/2 ≤ q ≤ (2w + 2)/3 (domain 1), we obtain:

1

4
w2 − qw +

1

2
w + q2 − q +

1

4
.

For w odd and (2w + 3)/3 ≤ q ≤ w (domain 2), we have:

−3

4
w2 + 2qw − 1

2
w − 5

4
q2 +

1

2
q +

1

4
if q is even,

−3

4
w2 + 2qw − 1

2
w − 5

4
q2 +

1

2
q if q is odd.

The desired representations are then obtained by dividing the number of vote distributions

with a dummy player by the total number of vote distributions. QED

Remark 1. Very similar representations dealing with the cases where w is different from

9 modulo 6 can of course be obtained 1 and used to compute the probability of having a

dummy player. Some computed values of P (3, w,Q), with Q = q/w, are listed in Table 1.

These results show that the probability of having a dummy in the 3-player case can reach

very high values (close to 0.70) ; moreover, it turns out that P (3, w,Q) first increases as the

quota increases, then decreases for a quota higher than about 0.75.

Remark 2. Let P (3, Q) be the limiting probability of having a dummy player in a 3-player

weighted voting game when w tends to infinity. Simple representation for P (3, Q) can easily

be obtained from Proposition 3: replacing q by Qw and making w tend to infinity, we get

P (3, Q) =
−3(2Q− 1)2

3Q2 − 6Q+ 2
for 1/2 < Q 6 2/3,

1. These representations are available from the authors upon request.
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P (3, Q) =
3(Q− 1)(5Q− 3)

3Q2 − 6Q+ 2
for 2/3 6 Q 6 1.

From this representation, we verify that P (3, Q) is minimized and equal to 0 when Q tends

to 1 (unanimity) or to 1/2 (majority) and it is easy to obtain that P (3, Q) is maximized for

Q = 0.7676. We get P (3, Q) = 69.72% . Table 2 gives some calculated values of P (3, Q).

Remark 3. Suppose that the values of Q are uniformly distributed on [1/2, 1]. It is easily

obtained from our representation for P (3, Q) that the average or expected probability of

having a dummy player in 3-player weighted voting games is given as

E[P (3, Q)] =

∫ 1

1/2
2P (3, Q)dQ = 40.83%.

Table 1. Probability of having a dummy with 3 players (in %)

Value of Q

w 0.5 2/3 0.75 0.8 5/6 0.9 0.95 0.98 0.99

10 0 33.33 57.14 57.14 37.50 37.50 0 0 0

15 0 30.77 58.82 58.82 50.00 31.58 0 0 0

20 0 50.00 59.26 62.07 54.84 43.75 24.24 0 0

25 0 44.44 62.79 63.04 58.33 37.25 21.15 0 0

30 0 40.00 63.49 63.64 59.42 43.84 17.33 0 0

35 0 50.00 65.12 64.44 56.25 40.00 15.69 0 0

40 0 46.15 64.81 64.96 58.06 44.96 25.76 0 0

45 0 43.36 65.47 65.10 59.24 41.21 23.21 0 0

50 0 50.00 66.28 65.57 60.42 45.05 21.26 11.06 0

55 0 47.37 66.67 65.77 61.21 42.28 19.52 10.32 0

60 0 45.00 65.98 65.91 61.82 45.36 25.84 9.33 0

65 0 50.00 66.67 66.13 59.63 42.86 24.29 8.81 0

70 0 47.83 66.96 66.30 60.32 45.45 22.66 8.09 0

75 0 46.01 67.27 66.34 60.97 43.33 21.41 7.68 0

80 0 50.00 66.97 66.52 61.51 45.65 26.09 7.13 0

85 0 48.28 67.28 66.60 62.03 43.69 24.75 6.81 0

90 0 46.67 67.51 66.67 62.36 45.65 23.55 6.37 0

95 0 50.00 67.74 66.77 60.92 43.99 22.46 6.12 0

100 0 48.48 67.36 66.85 61.38 45.79 26.12 11.30 5.76

201 0 48.51 68.38 67.41 62.65 45.81 26.18 11.30 5.79

999 0 49.70 69.09 67.97 63.44 46.02 26.44 11.41 5.85
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3.3 The case with 4 players

The 4-player case is more complex and we only propose limiting representations for

P (4, Q), assuming that w tends to infinity. We start from the following characterization

result.

Lemma 6 One (or two) dummy player(s) exist(s) in a 4-player weighted voting game if

and only if (w1+w2+w4 < q and w1+w2+w3 ≥ q) or (w1+w3+w4 < q and w1+w2 ≥ q)

or (w1+w3+w4 < q and w1+w3 ≥ q and w1+w4 < q) or w2+w3 ≥ q. If (w1+w3+w4 < q

and w1 + w2 ≥ q), and only in this case, two dummy players exist.

Lemma 6 (the proof is in the Appendix) leads to the following proposition, where

P2(4, Q) designates the limiting probability of having exactly two dummy players in a

4-player weighted voting game.

Proposition 4 When w tends to infinity, the probability of obtaining at least one dummy

player is

P (4, Q) =
2(−219Q3 + 378Q2 − 216Q+ 41)

4Q3 − 12Q2 + 12Q− 3
for 1/2 < Q 6 3/5,

P (4, Q) =
2(156Q3 − 297Q2 + 189Q− 40)

4Q3 − 12Q2 + 12Q− 3
for 3/5 < Q 6 2/3,

P (4, Q) =
2(75Q3 − 162Q2 + 117Q− 28)

4Q3 − 12Q2 + 12Q− 3
for 2/3 < Q 6 3/4,

P (4, Q) =
2(−53Q3 + 126Q2 − 99Q+ 26)

4Q3 − 12Q2 + 12Q− 3
for 3/4 < Q 6 1;

and the probability of having exactly two dummies is given as:

P2(4, Q) =
6(2Q− 1)3

4Q3 − 12Q2 + 12Q− 3
for 1/2 < Q 6 2/3,

P2(4, Q) =
6(Q− 1)2(8Q− 5)

4Q3 − 12Q2 + 12Q− 3
for 2/3 < Q 6 1.

Proof. Our approach is similar to the one used to prove Proposition 3, with an additional dif-

ficulty since we have to distinguish four cases for evaluating the number of vote distributions

giving rise to at least one dummy player, in accordance with Lemma 6. The representations

we obtain (functions of both w and q) are unfortunately very complex and their practical

use is limited. However, it is easy to deduce from these complicated expressions some limi-

ting representations for the case where w tends to infinity (as already done in Remark 2):

we have just to consider the higher degree term in w in the quasi polynomials we obtain. To
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illustrate, consider the total number of vote distributions in a weighted voting game with 4

players. This number corresponds to the number of integer solutions of the following set of

(in)equalities:

w1 ≥ w2, w2 ≥ w3, w3 ≥ w4, w4 ≥ 1, w1 < q and w1 + w2 + w3 + w4 = w.

For (w + 1)/2 ≤ q < w, w odd, the quasi polynomial we obtain is as follows:

− 1

48
w3 + (

1

12
q − 1

48
)w2 + (− 1

12
q2 +

1

12
q +

1

48
)w +

1

36
q3 + f(q),

where f(q) is a degree-2 quasi polynomial in q. Let Q = q/n and replace q by Qn in this

representation. We obtain

− 1

48
w3 + (

1

12
wQ− 1

48
)w2 + (− 1

12
w2Q2 +

1

12
wQ+

1

48
)w +

1

36
w3Q3 + f(wQ),

where the degree of w in f(wQ) is lower than 3. The coefficient of w3 (higher degree term

in w) is:

− 1

48
+

1

12
Q− 1

12
Q2 +

1

36
Q3 =

4Q3 − 12Q2 + 12Q− 3

144
. (3)

We obtain in the same way the coefficients of w3 in the quasi polynomials associated to

each of the four cases with a dummy player (notice that different domains have to be

distinguished, depending on the value of Q), and the representation for P (4, Q) is obtained

by summing the four cases and dividing by (3). P2(4, Q) is obtained in a similar way by

only considering the case where two dummies exist. QED.

Table 2 lists computed values of P (4, Q) for various values of the relative quota Q.

When the relative quota Q moves from 1/2 to 1, the probability of having at least one

dummy player decreases over the range of values with 1/2 ≤ Q ≤ 0.54, then increases

over the range 0.54 ≤ Q ≤ Q = 0.8621 and decreases again and tends to 0 when Q tends

to 1. Notice that for Q = 0.54, P (4, Q) = 32.81% (local minimum) and for Q = Q, we

obtain P (4, Q) = 68.49%, a surprisingly high value. P2(4, Q), the probability of having

two dummies, increases when Q moves from 1/2 to Q = 0.741, and then monotonically

decreases. Finally, assuming that Q is uniformly distributed on [1/2, 1], we obtain that

E[P (4, Q)] = 50.97% and E[P2(4, Q)] = 18.00%.

Figure 1 represents the limiting probabilities according to the quota Q for both the 3

and 4-player cases. Contrary to the 3-player case, the case with 4 players does not lead to

a regular single-peaked function : as mentioned above, in addition to the global minimum

reached for Q = 1, we obtain when n = 4 a local minimum which is not far from the

majority case. We will see in the following section that the limiting probability curves for

the cases with 5 players and more have the same shape than the one obtained for 4 players.
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Table 2. Limiting Probability for having at least one dummy for 3 and 4

players (in%)

Quota Q P (3, Q) P (4, Q) P2(4, Q)

1/2 0 50.00 0

0.51 0.29 40.51 0.01

0.52 1.55 35.17 0.07

0.55 7.64 34.26 0.94

0.60 23.08 47.31 6.45

0.65 42.69 50.45 19.55

2/3 50.00 52.17 26.09

0.70 61.64 54.93 36.32

0.75 69.23 56.67 40.00

0.80 68.18 62.81 34.71

0.85 60.32 68.20 24.63

0.90 46.39 64.86 13.25

0.95 26.45 44.85 3.90

0.98 11.41 21.45 0.68

0.99 5.85 11.35 0.18

1 0 0 0

Figure 1 – Limiting probability of having at least one dummy player for 3 and 4 players
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4 Numerical results for more than 4 players

We extend numerically the results presented in Table 1 (coming from Proposition 3) and

those corresponding to Table 2 (computed from Remark 2 and Proposition 4). In order to

obtain the desired probabilities for more than 4 players, two approaches are considered. The

first one gives exact results whereas the second one is based on simulations and provides

estimated probabilities.

Exact computations are done by considering the exhaustive list of all possible vectors of

weights for a given number w of votes. For all these vectors (w1, . . . , wn), we check whether

or not the last player is decisive (remember that w1 ≥ w2 ≥ . . . ≥ wn). To do this, we use

the classical Banzhaf power index 2 since a player, by construction, is a dummy if his (her)

index is equal to zero. We compute this index using a generating functions approach which

leads to exact values (this point is fundamental because we are looking for an index with a

zero value, which prohibits the use of approximation methods). Finally, the exact probabi-

lity of having at least one dummy player is the ratio between the number of times the last

player is never decisive and the number of vectors (w1, . . . , wn) considered as admissible

(in accordance with the assumed uniform distribution of weight vectors). Unfortunately,

enumerating all these distributions is highly time consuming when the number of players

and w become large (see, for example, Barthélémy et al., 2011b). It is the reason why we

also resort to simulations.

Our simulations are based on random vectors of weights. The estimated probability of

having at least one dummy player is then obtained by dividing the number of times the last

player is never decisive by the number of vectors (w1, . . . , wn) randomly generated. In order

to simulate the probability of a dummy player, two steps have to be considered. First, we

have to simulate a vector of weights for a given w and a given number of players n. This

can be done by using for instance the Rancom algorithm proposed by Nijenhuis and Wilf

(1978). Second, we have to check whether there is at least one dummy player in the weighted

game associated to these weights. This is done as mentioned above by using the Banzhaf

power index. Then repeating these two steps k times gives the estimated probability which

corresponds to the proportion of weighted games leading to a dummy player.

We analyze first the results for a finite total number of votes w. In a second step, we

will extend our study to the case where this total number of votes tends to infinity.

2. For a clear and simple presentation, see Straffin (1994).
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4.1 Finite case

We compute both exact and simulated probabilities. Tables 3 to 10 give the probability

of having at least one dummy player according to given values of the quota Q, for weighted

games with 3 to 10 players.

The probabilities P (n,w,Q) are not monotonic with respect to parameters Q, w and n.

However, we observe that the probability tends to 0 when n increases, which is a particular

illustration of the so-called Penrose’s law. Penrose (1946, 1952) argues that when the number

of players is large and the relative weights not too dissimilar, the ratio between the voting

powers of any two voters, measured by their Banzhaf index, tends to the ratio between

their weights. This result holds only when the quota is fixed to 1/2. Lindner and Machover

(2003) have shown that, if the Penrose’s law is not always true, “experience suggests that

counter-examples are atypical”. Using simulations, Chang et al. (2006) conclude that if the

result holds only for a quota of 50% when the Banzhaf index is considered, the Penrose’s

law remains valid for all values of the quota when power is measured by the Shapley-Shubik

index. 3 Let us notice that a dummy player with the Banzhaf index is a dummy player as

well with the Shapley-Shubik index (and reciprocally). As there are no weights equal to

zero by construction in our study, each player tends to get a positive power when n tends

to infinity and the probability of having a dummy player tends to zero. Figure 2 illustrates

this result for w = 60 and Q = 2/3, 0.75, 0.90, 0.95 4.

Tables 3 to 10 report as well the optimal probabilities P (n,w,Q), P (n,w,Q) (denoted

Pmin and Pmax) and the corresponding quotas Q and Q. For a given w, we compute all the

quotas Q running from majority to unanimity. More precisely, we consider all the quotas

from Q = 0.50 (corresponding to either q = w/2 or q = (w + 1)/2), to Q = (w − 1)/w (the

closest quota to unanimity, q = w − 1).

For instance, for w = 10, we calculate the probability of having at least a dummy player

for q = 5, 6, 7, 8 and 9, leading to relative quotas equal to 0.5, 0.6, 0.7, 0.8 and 0.9. In this

case, we get unanimity as soon as q is greater than 9 and this implies that for all Q > 0.9,

P (10, n,Q) = 0%. Similarly, when considering w = 20, the unanimity case is obtained as

soon as Q > 0.95 (corresponding to q > 19). In Tables 3 to 10, the symbol ‘-’ is represented

for cases where the relative quota Q is equivalent to the unanimity case (q = w). Notice that

we do not take into account the unanimity case in the computation of Pmin (as mentioned

above, unanimity leads to a zero probability).

As the number of different quotas may be high (50 possible quotas for w = 100), only se-

3. See Straffin (1994) for a presentation of this power index.

4. Obviously, other values of w or Q lead to the same kind of curves.
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Figure 2 – Illustration of the Penrose’s for w = 60

Figure 3 – 5-player case, smallest and highest probabilities of a dummy player according to

w

lected values ofQ are reported in Tables 3 to 10, withQ ∈ {0.5, 2/3, 0.75, 0.8, 5/6, 0.9, 0.95, 0.98, 0.99}.
But Pmin and Pmax are computed using all the possible quotas. For instance, with w = 15

13



and n = 5, Pmin = 7.69% with a quota Q = 0.60 (not reported in Table 5). If more than

one quota q lead to the smallest probability Pmin, q is the smallest value, and Q is the

corresponding relative value. For the above example, each Q ∈ [0.60, 2/3[ (corresponding

to [9/15, 10/15[) leads to the same probability Pmin = 7.69%, and our convention gives

Q = 0.60.

Concerning Q, a strange phenomenon is worth noticing. For small values of w, Q is close

to the majority and when w increases, Q suddenly tends to unanimity. Figure 3 illustrates

this phenomenon in the 5-player case. The value w̃ of the total number of votes for which Q

becomes (almost) the unanimity instead of (almost) the majority increases with n, n ≥ 4,

the number of players. For instance w̃ = 35 in the 4-player case, w̃ = 53 in the 5-player

case, w̃ = 87 in the 6-player case and w̃ > 100 when n ≥ 6.

4.2 Infinite case

Limiting probabilities are simulated probabilities computed with high values of the total

number of votes w. The logic behind this approach may be illustrated in the three-player

case by comparing the P (3, 999, Q) probabilities, given in Table 1, with the limiting ones

P (3, Q), given in Table 2. To get precise approximations, we take w equal to 9 999 5.

Table 11 reports the estimated limiting probabilities from 3 to 15 players. Each row

illustrates the Penrose’s law : the probabilities tend to decrease when n increases, as pre-

viously mentioned for the finite case 6. Figure 4 is given as an illustration of this remark

with four values of Q.

Figure 5 presents the limiting probabilities plotted for 4, 6, 8, 10 and 15 players as a

function of the quota Q. This Figure illustrates that fixing the quota at values higher than

50% (as 2/3 or even 3/4) does not lead to a smaller probability of having at least a dummy

player. Moreover, in general, increasing the quota tends to increase this probability, except

for values of Q very close to 1. This is particularly clear when the number of players is high.

5. We set w = 99 999 for games with more than 16 players. We have checked that the estimation is not

statistically improved for higher values of w.

6. Note however that for high values of Q, the convergence is not clear and more players are needed in

order to recover Penrose’s law.
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Figure 4 – Penrose’s law when w tends to infinity

Figure 5 – Limiting probability of having at least one dummy player for 4 to 15 players
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5 Conclusion and final remark

The main teachings that emerge from our results can be summarize as follows.

1) Barthélémy et al. (2011) have shown that the probability of having a dummy player

is surprisingly high in majority voting games (Q = 50%). Our results demonstrate that

increasing the quota to 2/3 or 3/4 increases the probability that the “dummy paradox”

occurs. In the three-player case, this (limiting) probability is maximized for Q = 0.77 and

the corresponding quota values for n > 3 increase with n and stand between 0.80 and 0.99.

2) In order to minimize the probability of having dummy players, it is advisable to

choose a quota between 0.50 and 0.55. If the choice is restricted to “standard” quotas (1/2,

2/3, 3/4...), taking Q = 0.50 appears to be the right solution. The choice of a quota close

to 1, that could be suggested by the observation that there is no dummy player for Q = 1,

would be a serious mistake: for Q close to 1, the risk of a dummy player would be more

likely maximized rather than minimized.

3) The probability of having a dummy first increases then decreases with the number of

players, whatever the quota value, suggesting that the Penrose’s law holds for Q > 1/2. It is

worth noticing, however, that this convergence towards 0 is much slower with high values of

Q than with small values. To illustrate, with 15 players, the probability of a dummy player

is less than 0.25% for 0.5 < Q < 0.66 and is still about 43% for Q = 0.98.

Final Remark. Our results suppose that the player 1, the “biggest” player, holds a weight

that may be (almost) as high as the quota: w1 < Q. This assumptions is of course disputable

and it seems of interest to study the extent to which it impacts our results. In order to clarify

this question, we have considered the more constrained -but perhaps more realistic- situation

where the number of votes of the biggest player may not be higher or equal to half of the

total number of votes: w1 < w/2. Let P ∗(n,Q) be the probability of having at least one

dummy player under this stronger constraint when w tends to infinity. Using exactly the

same approach as in Section 3, we obtain the following results for the 3-player case:

P ∗(3, Q) = 6(2Q− 1)2 for 1/2 < Q 6 2/3,

P ∗(3, Q) = −6(14Q2 − 20Q+ 7) for 2/3 6 Q 6 3/4,

P ∗(3, Q) = 12(Q− 1)2 for 3/4 6 Q 6 1.

The comparison of the computed values of P ∗(3, Q) (not reported here) with the values

listed in Table 2 shows that P ∗(3, Q) is lower than P (3, Q) for values of Q close to 1/2

or 1 ; however, we observe that for intermediate values of Q, P ∗(3, Q) is clearly higher

than P (3, Q). On the average, we obtain that E[P ∗(n,Q)] = 1/3 < E[P3, Q)] = 40.83%:

introducing the additional constraint that w1 < w/2 tends to reduce the risk of having a

dummy player but this risk still remains high.
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In the 4-player case, the results are the following:

P ∗(4, Q) = 2(2− 3Q)(126Q2 − 132Q+ 35) for 1/2 < Q 6 3/5,

P ∗(4, Q) = 2(372Q3 − 702Q2 + 441Q− 92) for 3/5 < Q 6 2/3,

P ∗(4, Q) = 2(48Q3 − 108Q2 + 81Q− 20) for 2/3 < Q 6 3/4,

P ∗(4, Q) = −(512Q3 − 1224Q2 + 972Q− 257) for 3/4 < Q 6 5/6,

P ∗(4, Q) = 2(Q− 1)(68Q2 − 130Q+ 59) for 5/6 < Q 6 1.

From computed values of P ∗(4, Q), we conclude in the same way as for the 3-player case:

requiring that w1 must not be higher or equal to w/2 reduces the probability of having a

dummy for some values of Q but increases this probability for other values. We obtain

that the expected probability is given as E[P ∗(4, Q)] = 47.08%, a value slightly lower than

E[P (4, Q)] = 50.97%.

Finally, we have estimated via simulations the values of P ∗(n,Q) for n = 5, 6, 7, ..., 15.

It turns out that these values converge towards those of P (n,Q) given in Tables 5 from

10, confirming the rather limited impact of our assumption (w1 < Q) on the probability of

having a dummy player for n > 3.
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6 Appendix

Proof of Lemma 1. Consider the following game [w2+1; w2−2, w−6n+26+a
4 , w−6n+26−a

4 , 3, 3, ..., 3, 1]

with a = 0 if n is odd (even) and w
2 is even (odd) and a = 2 if n is odd (even) and w

2 is odd

(even).

We have to show that q > w1 ≥ w2 ≥ ... ≥ wn (1) and since wn = 1 we have to show

that there is no coalition S ⊆ N/{n} such that
∑

i∈S wi = q−1 (2). Indeed, this is the only

situation for which the player n, with one vote, is a dummy player.

(1) clearly q > w1 and w2 ≥ w3 thus we have just to show that w1 ≥ w2 and w3 ≥ 3. We

have w1 ≥ w2 if w
2 − 2 ≥ w−6n+26+a

4 that is to say w ≥ 34 + a − 6n. Furthermore, w3 ≥ 3

if w−6n+26−a
4 ≥ 3, that is to say w ≥ 6n− 14 + a. Since n > 3, the different inequalities are

implied by w ≥ 6n− 12.

(2) Consider a coalition S ⊆ N/{n} with 1 ∈ S. Since w3 ≥ 3 we have
∑

i∈S wi ≥ q

except if S = {1}. Since w1 = q − 3, it is never possible to obtain a total weight equal to

q − 1 with the player 1 belonging to S. Assume now that the player 1 does not belong to

S, we have
∑n−1

i=2 wi = q. Since wi ≥ 3, i = 2, 3, ..., n− 1, it is not possible to obtain a total

weight equal to q − 1. QED

Proof of Lemma 2 Consider the following game [q;w−m− 2,m− 2n+7, 2, 2, ..., 2, 1] We

have to show that q > w1 ≥ w2 ≥ ... ≥ wn (1) and since wn = 1 we have to show that there

is no coalition S ⊆ N/{n} such that
∑

i∈S wi = q − 1 (2).

(1) we have just to show that w1 ≥ w2 and w2 ≥ 2. w1 ≥ w2 if w−m− 2 ≥ m− 2n+ 7

or m ≤ w+2n−9
2 . Since m ≥ 2n− 5, we must have 2n− 5 ≤ w+2n−9

2 or w ≥ 2n− 1. This is

true by hypothesis. Furthermore, w2 ≥ 2 if m− 2n+ 7 ≥ 2 or m ≥ 2n− 5 which is true by

hypothesis.

(2) Consider a coalition S ⊆ N/{n} with 1 ∈ S. Since w2 ≥ 2 we have
∑

i∈S wi ≥ q

except if S = {1}. Since w1 = q − 2, it is never possible to obtain a total weight equal to

q − 1 with the player 1 belonging to S. Assume now that the player 1 does not belong to

S, thus we have
∑n−1

i=2 wi = w− q+1. But w− q+1 = q− 1 implies q = w
2 +1 which is not

possible by hypothesis. QED

27



Proof of Lemma 3 Consider the following game [q;w−m−n+1,m+1, 1, ..., 1] We have

to show that q > w1 ≥ w2 ≥ ... ≥ wn (1) and since wn = 1 we have to show that there is

no coalition S ⊆ N/{n} such that
∑

i∈S wi = q − 1 (2).

(1) we have just to show that w1 ≥ w2 and w2 ≥ 1. We have w1 ≥ w2 if w−m−n+1 ≥
m+1 or m ≤ w−n

2 . We know that m < 2n−5, thus w1 ≥ w2 if 2n−5 < w−n
2 or w ≥ 5n−10.

This is true by hypothesis.

(2) remark first that w1 + w3 + w4... + wn−1 = q − 2. Thus the players 1 and 2 must

belong to the coalition S ⊆ N/{n} if we want
∑

i∈S wi = q − 1. But w1 + w2 = w − n + 2

or w1 +w2 = w − (n− 2) . By hypothesis, m ≥ n− 2, thus we can write w1 +w2 ≥ w −m

or w1 + w2 = q. It is not possible to obtain a total weight equal to q − 1. QED

Proof of Lemma 4 Consider the following game [q;w − (n − m − 1)(m + 1) − m,m +

1, ...m+1, 1..., 1] knowing that the number of players with a weight equal to m+1 is equal

to n−m− 1 and the number of players with a weight equal to 1 is equal to m. We have to

show that q > w1 ≥ w2 ≥ ... ≥ wn (1) and since wn = 1 we have to show that there is no

coalition S ⊆ N/{n} such that
∑

i∈S wi = q − 1 (2).

(1) we show first that w1 < q. Actually, this is the case if w − (n − m − 1)(m + 1) −
m < w − m or (n − m − 1)(m + 1) > 0. This inequality is true if n − 1 > m which is

our hypothesis (m ≤ n − 2). We have to show now that w1 ≥ w2. This is the case if

w − (n−m− 1)(m+ 1)−m ≥ m+ 1 or w > (m+ 1)n−m2 which is our hypothesis.

(2) Remark that
∑

i∈S wi = q with S = {1, 2, ..., n − m}. This sum becomes equal to

q− (m+1) if one individual (different from the player 1) leaves the coalition S. Since there

are m − 1 players different from the player n with a weight equal to 1, it is not possible

to obtain a total weight equal to q − 1 if the player 1 belongs to S. Remark now that∑
i∈S wi = (n−m− 1)(m+ 1) +m− 1 with S = {2, ..., n− 1}. To obtain

∑
i∈S wi = q− 1,

we must have (n−m−1)(m+1)+m−1 = q−1 or (n−m−1)(m+1)+m−1 = w−m−1. We

must have w = (n−m−1)(m+1)+2m. A short manipulation gives us w = n(m+1)−m2−2

which is not possible by hypothesis. QED

Proof of Lemma 5 Observe first that 3 is the only player who can be a dummy: if 2

and 3 are dummies, then the player 1 is a dictator, in contradiction with our assumptions.

Consider the possibly winning coalitions to which the player 3 is susceptible to belong:{1,3},
{1,2} and {1,2,3}. The player 3 is a dummy if either these coalitions are losing, or they are

winning and remain winning when the player 3 is removed, i.e. if and only if: (w1 +w3 < q

or (w1 + w3 ≥ q and w1 ≥ q)) and (w2 + w3 < q or (w2 + w3 ≥ q and w2 ≥ q)) and

(w1+w2+w3 < q or (w1+w2+w3 ≥ q and w1+w2 ≥ q)). Given that the grand coalition is

always winning and a coalition with only one player cannot be winning (no dictator), these

inequalities reduce to: w1+w3 < q and w2+w3 < q and w1+w2 ≥ q. We obtain the desired

result by noticing that w1 + w3 < q implies w2 + w3 < q (recall that w2 ≤ w1). QED
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Proof of Lemma 6 Notice that the only possible dummies are the players 3 and 4 and if

3 is a dummy, so is 4. Consider first the player 4. The possibly winning coalitions to which

the player 4 can belong are {1,4}, {2,4}, {3,4}, {1,2,4}, {1,3,4}, {2,3,4} and {1,2,3,4}.
Proceeding as in the proof of Lemma 5, and after eliminating the redundant inequalities,

we obtain that the player 4 is a dummy if and only if: w1+w4 < q and (w1+w2+w4 < q or

w1+w2 ≥ q) and (w1+w3+w4 < q or w1+w3 ≥ q) and (w2+w3+w4 < q or w2+w3 ≥ q)

and w1 + w2 + w3 ≥ q. This set of inequalities can be rewrite in the following way:

(w1 + w4 < q and w1 + w2 + w4 < q and w1 + w3 + w4 < q and w2 + w3 + w4 < q and

w1 + w2 + w3 ≥ q), (a)

or

(w1 + w4 < q and w1 + w2 + w4 < q and w1 + w3 + w4 < q and w2 + w3 ≥ q and

w1 + w2 + w3 ≥ q), (b)

or

(w1 + w4 < q and w1 + w2 + w4 < q and w1 + w3 ≥ q and w2 + w3 + w4 < q and

w1 + w2 + w3 ≥ q), (c)

or

(w1+w4 < q and w1+w2+w4 < q and w1+w3 ≥ q and w2+w3 ≥ q and w1+w2+w3 ≥ q),

(d)

or

(w1 + w4 < q and w1 + w2 ≥ q and w1 + w3 + w4 < q and w2 + w3 + w4 < q and

w1 + w2 + w3 ≥ q), (e)

or

(w1+w4 < q and w1+w2 ≥ q and w1+w3+w4 < q and w2+w3 ≥ q and w1+w2+w3 ≥ q),

(f)

or

(w1+w4 < q and w1+w2 ≥ q and w1+w3 ≥ q and w2+w3+w4 < q and w1+w2+w3 ≥ q),

(g)

or

(w1+w4 < q and w1+w2 ≥ q and w1+w3 ≥ q and w2+w3 ≥ q and w1+w2+w3 ≥ q).

(h)

It is easy to check that (b), (c), (d) and (f) contain contradictory inequalities and can

be ruled out. Moreover, (a), (e), (g) and (h) can be reduced to:

w1 + w2 + w4 < q and w1 + w2 + w3 ≥ q, (case 1)

or w1 + w3 + w4 < q and w1 + w2 ≥ q, (case 2)

or w2 + w3 + w4 < q and w1 + w3 ≥ q and w1 + w4 < q, (case 3)

or w2 + w3 ≥ q, (case 4)

in accordance with Lemma 6. Consider now the player 3. 3 is not a dummy in case
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1: coalition {1,2,3} is winning and coalition {1,2} is losing (w1 + w2 + w4 < q implies

w1 + w2 < q). We obtain the same conclusion for cases 3 and 4. By contrast, the player

3 has no power in case 2 and is a dummy: in this case, the player 3 is not pivotal in the

winning coalition to which he (she) belongs ({1,2,3} and {1,2,3,4}) because w1 + w2 ≥ q.

QED
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